Magnetosphere-Ionosphere-Thermosphere Coupling During Storms and Substorms

Bin Zhang
Oliver Brambles
Sheng Xi
John Lyon
Tian Luo
Roger Varney
Jeremy Ouellette
Mike Wiltberger
Why (or when do we need to) worry about the complications of SW-M-I-T coupling?

• M, I and T are especially interactive for strong SW driving
• Model predictions don’t do well w/o coupling
• Utility depends on the fidelity of prediction: Space weather
• “Understanding” is demonstrated by prediction
• The coupled M-I-T system is equisitely complex and interesting
What might you learn from this tutorial?
(or be reassured you that what you once thought was true is still true)

• Coupling agents

• Pathways (coupled) and feedback
 – Electromagnetic
 – Material

• Insights into M-I-T coupling

• Coupling during storms
 (with data-model comparisons)
Agents of M-I-T Coupling

135° < θ_{MF} < 225°
Agents of M-I-T Coupling

Winter, high driving Conductance?
Pathways of M-I-T Interaction

1. Electromagnetic

Ionospheric Ohm’s law, electrostatic condition, current continuity ⇒

\[j_{\parallel i} \cos \delta = \nabla \cdot \vec{\Sigma} \cdot \nabla \Phi_i \]

Find \(\Phi_i \)

\[\downarrow \]

Spatial distribution of \(\vec{\Sigma} \) determines \(\Phi_i \) for given \(j_{\parallel i} \) and vice-versa

2. Material transport
Global M-I-T Interactions (active periods)

O+

O+ loss

Tail reconnection

Magnetosphere inflation

SW-MIT interaction

Feedback?

Joule heating, upwelling, etc.

Enhanced convection & entrainment of dayside O+ into polar circulation

Regions of enhanced Poynting fluxes, soft electron precipitation, structured FACs

Needs attention in system context

Enhanced convection & entrainment of dayside O+ into polar circulation

Foster et al. 05

Liu et al. 05
Empirical convection: Increasing strength of SW driving

Stronger driving: Convection is faster and extends to lower latitudes

Empirical convection: Increasing strength of SW driving

Weimer model

Magnetopause location: $\rho v^2 |_{sw} = 4B(r)^2/2\mu_0$ (Better: Shue et al., 1998)

CW rotation of the convection pattern when viewed from above NP

Excess flux circulation in dusk cell

Harang region

Weimer-2005 model
Empirical convection: Effect of IMF B_y

No mirror symmetry with change in sign of B_y (Heppner 1972)

NH cusp, PC pulled dawnward

Over flux circulation reverses: Now higher in dawn cell
Effect of season/dipole tilt

Weimer model

SUMMER: Rotation moderated, over flux circulation exacerbated

Weimer-2005 model

6/23/2015
CONCLUSION

Ionosphere polarizes so as to maintain

$$\nabla \cdot \vec{J}_H = \hat{b} \times \vec{E} \cdot \nabla \Sigma_H \approx 0$$
Effect of EUV Hall conductance gradient

Perpendicular Velocity in Equatorial Plane

Reconnection Rate Along the X-line

1-HOUR AVERAGE STATES

0 2 hr 4 nT –4 nT

6/23/2015
Effect of combined EUV and auroral Hall conductance gradient

LFM global simulation

One-hour average states for steady $N_{SW} = 5/\text{cm}^3$, $T_{SW} = 8.5 \text{ eV}$, $V_x = -300 \text{ km/s}$, $B_z = -4 \text{ nT}$, and $V_{yz} = B_{xy} = 0$
WIND, 17 Perigee Passes, 1995-97

Events selected for $\vec{V} > 250 \text{ km/s}$ and $\beta > 0.5$ (neutral sheet)
Asymmetries in poleward boundary intensifications and Alfvénic aurora

- 249 Poleward Boundary Intensifications (substorm expansion or pseudobreakup determined from THEMIS ASI)

 - MLAT of PBI
 - Number of Events vs. MLAT, deg

- Onset MLT
 - Number of Events vs. MLT, hr

- Downward Alfvénic Poynting Flux

- Broadband Electron Power

Nishimura et al. 2010
24 Aug 2005
CME Storm

Initial phase: 06:00 – 09:00 UT

- $B_z \approx \text{small}$
- $B_y \sim 20 \text{ nT}$
- $Kp \sim 3-6$

The B_y-dominant time period has been studied by Crowley et al. [2010] using TIME-GCM.

→ Results show Joule heating is important in enhancing the F-region neutral density.

Main phase: 09:00 – 16:00

- $B_z \rightarrow -40 \text{ nT}$
- $B_y \rightarrow -40 \text{ nT}$
- $Kp \approx 9$, $Dst = -184 \text{ nT}$ at 1200 UT
Weimer disclaimer: Model works best for $|B_y|$ and $|B_z|$ < 15 nT.
Coupled M-I-T (CMIT) model

\[j_{||} \cos \delta = \nabla \cdot \hat{\Sigma} \cdot \nabla \Phi_i \]
Monoenergetic and Diffuse Electron Precipitation Algorithm

Low-altitude BCs for MHD

Add EUV, broadband contributions

Robinson et al. 1987

CONDUCTANCE

\[\varepsilon = \frac{F_E}{F_N} \]
\[\Sigma_p = \frac{40 \varepsilon}{16 + \varepsilon^2} F_E^{0.5} \]
\[\Sigma_H = 0.45 \varepsilon^{0.85} \Sigma_p \]

Current-Voltage Relation

\[\Delta \Phi_{||} = \eta |J_{||}| \]

\[\eta = \frac{T_e^{05}}{n_e} \mathcal{H}(J_{||}) \quad [kV/\mu A/m^2] \]
\[\mathcal{H}(J_{||}) = \begin{cases} \eta_{\uparrow} j_{||} \text{ upward} \\ \eta_{\downarrow} j_{||} \text{ downward} \end{cases} \]
\[\eta_{\uparrow} = -5 \eta_{\downarrow} = 11.25 \]

Knight-Fridman-Lemaire

\[\Rightarrow F_N, F_E \text{ using a mirror ratio of 8} \]
Broadband Electron Precipitation Algorithm

$$\nabla \cdot \Sigma \cdot \nabla \Phi_i = j_{i||} \cos \alpha$$

Low-altitude BCs for MHD

$$\Sigma_p = \frac{40E}{16 + \xi^2} F_E^{0.5}$$
$$\Sigma_H = 0.45E^{0.85} \Sigma_p$$

CONDUCTANCE
Robinson et al. 1987

Add EUV, mono/diffuse contributions

$$F_E = 2.0 S_{||}^{0.5}$$
$$F_N = 3 \times 10^9 S_{||}^{0.46}$$

Keiling et al. 2002
Strangeway, 2010

Map to 100 km

Bandpass 5 - 180 secs

$$\frac{1}{\mu_0} \delta E \times \delta B \cdot \frac{B}{B}$$

Zhang et al. 2012
Change in Thermospheric Density due to Soft Electron Precipitation

Difference between CMIT simulations w/ and w/o soft electron precipitation (BBE, cusp)

Difference between CHAMP accelerometer measurements and MSIS90 model results

Comparisons at 400 km altitude. CHAMP data are averages for 2002 for intervals of Kp = 0 – 2. CMIT results are a 1-hour averages for $V_{sw} = 400$ km/s, $n_{sw} = 5$ cm$^{-3}$, IMF $B_z = -5$ nT, $F_{10.7} = 150$.

6/23/2015
“Standard” CMIT simulation for the storm

- CMIT tracks CHAMP reasonably well for weak driving (0600 – 0900 UT)
- CMIT overestimates ($\approx x2$) the CHAMP mass density during the main phase (0900 – 1600 UT)
- **Question:** What’s missing in the model during the main-phase simulation? Plasmaspheric effects? Ionospheric outflows? ...?
Effects of plasmaspheric plumes on dayside reconnection

- Plasma of plasmaspheric origin is observed in the dayside reconnection region [Borovsky and Denton, 2006; Walsh et al. 2014]
- To what extent does the plasmasphere influence dayside reconnection?

- The dayside reconnection rate is smaller in a multi-fluid global magnetosphere simulation when plasmaspheric H\(^+\) is included.

Does plasmaspheric H\(^+\) influence the stormtime F-region neutral density?
O\(^+\) Outflow Algorithm

\[r = 3 R_e \text{ surface} \]

Apply Outflow BCs

\[n_{O^+} = \frac{F_{O^+}}{V_{||O^+}} \]
\[V_{||O^+} = 40 \text{ km/s} , T_{O^+} = 100 \text{ eV} \]

Map \(F_{O^+} \) / B = const

Empirical Relation

\[F_{O^+} = 3 \times 10^{10} S_{||}^{1.2} \]

Brambles et al. 2011
Effects of ionospheric O$^+$ outflow on stormtime substorms

Observations and modeling studies show that outflows of ionospheric O$^+$ are important in stormtime solar wind-magnetosphere-ionosphere coupling, especially during CME-driven storms exhibiting “sawtooth oscillations.”

Note: Simulated onsets (with outflow) occur but are delayed ≈ 1.5 hr relative to observed onsets.

Do O$^+$ outflows influence the stormtime F-region neutral density?
Controlled Simulation Experiments

CMIT with:

- Two types of O\(^+\) outflow
- Fixed outflow flux: No causal regulation
Simulated F-region Neutral Density Compared to CHAMP

Better agreement when auroral O^+ is included in CMIT

10^{-12}g/m^3

CHAMP
Baseline
Gallagher plasmasphere
Auroral O^+
PW O^+

UT (hour), Aug-24, 2005

Zhang et al. 2014
Orbit-Averaged Neutral Density Compared to CHAMP

Baseline
Gallagher plasmasphere
Auroral O⁺
PW O⁺
Auroral O⁺ x2
CHAMP

Zhang et al. 2014
Effects of O^+ on M-I Coupling

- **Plasmaspheric H^+**: Little effect on CPCP, field-aligned current
- **Polar wind O^+**: Reduces CPCP
- **Auroral O^+ outflow**: Reduces CPCP, increases ring current intensity (but not enough and not sustained in these simulations)
- Hemispheric power is similar in all four runs between 10-11 UT but with different polar cap distributions.

Zhang et al. 2014
Effects cont’d

- CPCP is smaller when O\(^+\) outflow is included in the simulation

- Region-2 currents are larger when auroral O\(^+\) outflow is included ⇒ higher integrated current

- Less Joule heating in polar cap with more R1-R2 current closure

- Neutral temperature and density at 400 km altitude are lower when auroral O\(^+\) outflow is included

Zhang et al. 2014
Key Points: Auroral precipitation

• Increases meridional gradient in E-region conductivity
 – Ionosphere polarizes at the gradient
 – Exacerbates dawn-dusk asymmetry in ionospheric convection plasmasheet fast flows

Why does the M-I system maintain nearly divergence-free Hall currents?
Key Points: Soft electron precipitation

• Produced by direct-entry (cusp) and conversion of Alfvén wave power to field-aligned electrons (cusp and nightside convection throat)

• Enhances conductivity in the bottomside F-region

• Joule heating is enhanced there \Rightarrow neutral mass density is elevated at CHAMP altitude (but it increases too much)
Key Points: \(\text{O}^+ \) ionospheric outflows

- Lowers reconnection rate (dayside and nightside)
 - Lower CPCP
 - Slower convection
 - Less Joule heating, esp. in polar cap

- Auroral outflows have greatest impact

Do ionospheric outflows directly affect the neutral gas and vice-versa?