Accurate Quantification of Atomic Hydrogen Density in the Terrestrial Thermosphere and Exosphere

Jianqi Qin and Lara Waldrop

Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

CEDAR workshop

Santa Fe, NM, 19 – 24 June 2016
Terrestrial Hydrogen Population is Poorly Understood

Model predictions based on the Chamberlain [1963] theory and Monte Carlo simulations have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories.

**Exosphere: nearly collisionless**

**Thermosphere: complete thermalization**

Hydrogen temperature = ambient oxygen temperature
Outstanding Questions in Geocoronal Research

- **How to accurately quantify the terrestrial H density?**
  - We will show that inversion of satellite limb scanning of Ly$\alpha$ emission based on radiative transfer modeling can be a very useful technique to quantify atomic hydrogen density in the thermosphere and exosphere.

- **How to reconcile model predictions and observations?**
  - We will present a major finding, showing the existence of **Non-Thermal Hydrogen Atoms in the Terrestrial Upper Thermosphere**, where the hydrogen temperature increases significantly with declining solar activity, in direct contrast to the fundamental assumption of conventional theories.
The satellite orbits at 625-km altitude with an inclination of 74° from the equator. The measured Ly$_\alpha$ emission is attributed to resonant scattering of solar Ly$_\alpha$ photons by hydrogen atoms in the geocorona.
The radiative transfer model named *Lyao_rt*, originally developed by the late *J. Bishop*, has been thoroughly reexamined and modified.

The radiative transfer model can be used to calculate the transport of atomic hydrogen and helium emissions in the geocorona, such as:

- Solar Lyman series
- Balmer alpha emission
- Helium 58.4-nm emission

The model can be used to analyze satellite and ground-based measurements.
The inverse problem is an underdetermined non-linear least squares problem, which is solved through an iterative process using the Gauss-Newton method.
With the decrease of solar activity, the relative Ly\_\alpha radiances decrease more slowly or even increase with decreasing look angle, implying the existence of Non-Thermal Hydrogen Atoms in the Terrestrial Upper Thermosphere.
Inversion using Different Physical Constraints

Inversion using the Chamberlain model

Inversion using a two-exponential model

Dashed black - Monte Carlo simulations of Hodges (1994)

Decreasing scale height

Increasing scale height
Comparison of Thermospheric Scale Heights

Inversion using the Chamberlain model

\[ F_{10.7} = 200 \quad 170 \quad 120 \quad 80 \]

![Graph showing scale heights (km) with altitude and hydrogen density (cm\(^{-3}\))](image)

Inversion using the two-exponential model

![Graph showing scale heights (km) with altitude and hydrogen density (cm\(^{-3}\))](image)

The hydrogen temperature, or more precisely, the mean kinetic energy of the hydrogen population, increases significantly with declining solar activity.
Implications on Geocoronal Physics

Possible source mechanisms of the hot hydrogen atoms: (1) Interaction of thermal hydrogen atoms with the hot oxygen geocorona; (2) Charge exchange of the thermal hydrogen or oxygen atoms with the ionospheric hot protons; (3) Downward transport of the charge-exchange induced hot hydrogen atoms from plasmasphere; and (4) Precipitation of the charge-exchange induced energetic hydrogen atoms from the magnetosphere.
Satellite limb scan measurements of Ly$_\alpha$ emission is a very useful technique for quantifying the atomic hydrogen density in the terrestrial thermosphere and exosphere.

Analysis of GUVI measurements reveals that the upper thermospheric hydrogen temperature increases significantly with declining solar activity, contrary to the fundamental assumptions of conventional theories.

The new physics reported in this study suggests that the influence of ion-neutral coupling between the atmosphere, plasmasphere, and magnetosphere on geocoronal structure has been significantly underestimated for decades.

The present analysis provides essential knowledge for advancing development of geocoronal theory.
This work was supported by NASA award NNX16AF77G and by NSF award AGS 14-54839 CAR.

We thank B. Harding, J. Makela, F. Kamalabadi for useful discussion, and Larry Paxton for the GUVI data.

And special thanks to **James Bishop** for his pioneering works.