Overview of scintillation events due to E region and F region as inferred from SAGA

Name: Aurora López-Rubio Advisor: Seebany Datta-Barua Space Weather Lab

Introduction

Scintillation

- Rapid fluctuation in power and/or phase in received signals
- Caused by: variation in electron density in the ionosphere
- May be correlated across multiple receivers in space-time
- Allows characterization of ionosphere by observation of signal on ground that produce it

Previous Work

- Identified a phase/amplitude case [1]
- Only study of cases with phase data [2]

Objective: Use spaced-receiver method with amplitude data at high latitudes to calculate properties of irregularities. Compare to phase analysis and PFSIR data.

Background

SAGA

- SAGA: Scintillation Auroral GPS Array
- Collects: 100 Hz power and phase
- Scintillation signal
- Signals are then detrended and filtered [2]

Velocity estimation

- Internal turbulent motion + bulk drift motion: characterized by drift velocity (v)
- Bulk movement velocity
 - "Frozen-in" irregularities velocity
- Internal turbulent motion
 - Characteristic velocity (v_i)
- Assumptions made (verified afterwards analysis):
 - \(v_i < v \)
 - Correlation peak-correlation threshold
 - One irregularity layer

- Spaced-receiver method [4]:
 - \(s_i, s_j(t) \): Scintillation signal in receivers i and j
 - \(x_{ij}, y_{ij} \): 2D distance between pair of receivers i and j
 - \(\theta \): Direction of velocity from East
 - \(y \): Measurements
 - \(x \): System State
 - \(f(\theta) = f(x, y_\theta) \)
- \(v \): Noise (Monte Carlo simulation)

Height (z) and thickness (L) of scattering layer

- Comparison between observed (Ro) and theoretical (R_L) scintillation phase and amplitude signal ratio
- Theoretical ratio based on Rytov weak scatter theory

Cross correlation analysis

- \(S_p \): Amplitude spectrum
- \(S_p \), Phase spectrum
- \(S_{p, x} \): Electron density change spectrum (not known)
- \(S_{p, x} \)
- \(S_{\phi} \)
- \(S_{\phi, x} \)

Phase analysis

- \(T \): 400/500 km
- \(\phi \): 300/400 km
- \(F \): Layer in all receivers in both

Amplitude analysis

- \(T \): 400/500 km
- \(\phi \): 300/400 km
- \(F \): Layer in all receivers in both

Conclusion

- Velocity, height and thickness are calculated with SAGA amplitude data
- Amplitude estimation agrees with phase analysis and PFSIR results
- Amplitude analysis more cases with discarded estimations compared with phase analysis

Acknowledgments

1. NSF-AGS: 1651465
2. Roger Varney
3. Collaborators Gary S. Bust, Khinita B. Deshpande, and Donald L. Hampton
4. CEDAR student travel support

References

1. CV. Sreenivas, Y. Su, and S. Datta-Barua. "Detection, Classification, and Attribution of Auroral GPS Scintillation to Ionospheric Scattering Layer," in revision

Results

CASE: L1 Amplitude and Phase Case: F-region case, 16th November 2014 (DOY 320) 0:59-1:25 AM, PRN 32

- 5 operational receivers
- Elevated power and phase scintillation values
- Velocity correlation in signals
- Study of time period 1:15-1:51 UT for velocity and height estimation

Phase correlation analysis

- \(T \): 400/500 km
- \(\phi \): 300/400 km
- \(F \): Layer in all receivers in both

Amplitude analysis

- \(T \): 400/500 km
- \(\phi \): 300/400 km
- \(F \): Layer in all receivers in both

Conclusion

- Velocity, height and thickness are calculated with SAGA amplitude data
- Amplitude estimation agrees with phase analysis and PFSIR results
- Amplitude analysis more cases with discarded estimations compared with phase analysis