The Future of Space Weather Modeling (TBD)

Stan Solomon
High Altitude Observatory
National Center for Atmospheric Research

Outline

What is Space Weather?
Why should we attempt to describe it with physical models?
Recent Accomplishments
The Current Context
Prospects for Future Progress
Some Iconoclastic Recommendations
What is Space Weather?

“Natural processes in space that can affect the near-Earth environment, satellites, and space travel, such as magnetospheric disturbances and solar coronal events.”

E.g.:

— Coronal mass ejections and their effects on the magnetosphere
— Variations in solar photon output
— Variations in the near-Earth radiation environment
— Ionospheric disturbances caused by all of the above, and by the internal dynamics of the ionosphere-atmosphere system
— Variations of the upper atmosphere caused by all of the above, and by the internal dynamics of the ionosphere-atmosphere system

Why should we attempt to describe it with physical models?

— Because prognostic physical description is the traditional test of scientific understanding.
— Because there may be some societal benefit to realistic or probabilistic forecasts of space weather and the space environment.
— Because environmental analysis is a traditional component of exploration.
Recent Accomplishments

Time: 220h
The Current Context

New Space Weather Forecasting Model Going Operational with National Weather Service

RESEARCH-TO-OPERATIONS TRANSITION OF MODEL: THE RESULT OF A PARTNERSHIP BETWEEN THE BUS CENTER FOR INTEGRATED SPACE WEATHER MODELING AND NOAA'S SPACE WEATHER PREDICTION CENTER

SEATTLE—Through an unprecedented research-operations partnership, the Boston University-based Center for Integrated Space Weather Modeling (CISM) and the National Oceanic and Atmospheric Administration (NOAA) Space Weather Prediction Center are transitioning the first large-scale, physics-based space weather prediction model from research into operations. National Weather Service (NWS) scientists affiliated with CISM reported the news today at the annual American Meteorological Society (AMS) meeting in Seattle, Wash. CISM is a National Science Foundation (NSF) Science and Technology Center.

A large coronal mass ejection (CME) observed by the SDO spacecraft on December 2, 2010, near the end of the last solar maximum. The central image shows the sun imaged in the extreme ultraviolet (EUV, wavelength 10.4 nm) to show the hot outer atmosphere, the corona. The outer image is at the same scale and shows the bright CME in visible light. At this point the CME is much larger than the sun itself, moving away from the sun at a speed of about 200 miles per second. The CME came from the region around the brighter spot on the right hand side of the sun. To scale, the earth is smaller than the white spot caused by a bright star seen just above and to the right of the CME. [Image from NASA]

Operational Implementation of the Enlil Solar Wind Model
Prime Minister Cameron and President Obama agree that science and higher education are the foundation stones of their two nations’ 21st century economies and that the UK and U.S. have a responsibility to further their global leadership roles in these essential fields. The U.S. funds approximately one-third of the world’s scientific research and the UK is first among G-8 countries in scientific publications and citations as a fraction of GDP. In higher education, the U.S. and UK are home to the world’s ten highest ranking universities.

Recognizing the great potential for productive cooperation in these domains, the Prime Minister and President reaffirmed during the State visit their mutual commitment to strong collaboration in science and higher education and agreed to work to increase the number of joint endeavours among individuals in cutting-edge laboratories, universities, scientific societies, think tanks, government agencies to develop human capital and ensure a strong and agile knowledge base. They expressed particular support for cooperation in fields that will create jobs and generate new economic opportunities in both countries while tackling some of the most pressing global challenges facing the world today. The leaders also expressed a determination to maintain research excellence that leads to economic growth and job creation.

The leaders welcomed in particular the growing partnership between the UK Meteorological Office (Met Office) and the U.S. National Oceanic and Atmospheric Administration’s (NOAA) National Weather Service, codified with the signing of an historic Memorandum of Agreement in February 2011. This agreement provides for a coordinated U.S.-UK partnership in the delivery of space weather alerts to help provide critical infrastructure protection around the globe. The two governments announced today that they will embark together on an ambitious program to create the world’s first combined space weather model capable of forecasting terrestrial weather with great accuracy and also indicating where, when, and for how long space weather effects will persist in our upper atmosphere and whether these anomalies are likely to disrupt and degrade GPS-enabled positioning, navigation, and timing capabilities.
Unfortunately...

The most deliterious aspects of space weather are the most difficult to forecast on actionable time scales.

E.g.:

- High-energy solar particles (and other energetic particles)
- Rapid variations in solar photon output (flares)
- The strength and direction of the interplanetary magnetic field
- Ionospheric irregularities / plasma bubbles / spread-F / scintillations

“Prediction is hard, especially when it’s about the future.”

Prospects for Future Progress

• Models of the heliosphere are primarily constrained by their inner boundary condition — measurements of the coronal magnetic field could greatly improve their ability to describe the interplanetary magnetic field.

• Coupling magnetospheric MHD models to the radiation belts, ring current, and the ionosphere, has demonstrated the power of a systems approach to geospace modeling.

• Great progress has been made in describing ionospheric instabilities and the mechanisms behind the formation of plasma bubbles.

• Comprehensive models of the atmosphere-ionosphere system show the importance of the internal dynamics of the atmosphere to short-term ionospheric variability
Some Iconoclastic Recommendations

Support modeling and modelers

Recruit students and postdocs into the numerical modeling discipline

Focus on some achievable goals

E.g.:

— Solar wind speed and density forecasting
— Statistical/empirical/assimilation approach to radiation belt forecasting
— Short-term thermosphere-ionosphere forecast based on data assimilation nowcasting, and forward modeling based on upstream IMF measurements
— Nowcasting of the atmospheric radiation environment

TBD

“...always in motion the future is...”