ROT1 estimation by dual-frequency GPS receiver measurements with code bias multipath correction during magnetic storms

Jack C. Wang, Yunxiang Liu, Zhe Yang, Ian Collett, Yu (Jade) Morton, Scott Palo
Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, USA
E-Mail: jack.c.wang@colorado.edu

Science Goal
Qualitatively understand the high-latitude ionospheric irregularities occurrence rate during the geomagnetic storms by dual-frequency GPS receiver with code noise multipath correction.

Rate of TEC index (ROTI)

\[\text{ROTI} = \frac{TEC(t + \delta t) - TEC(t)}{\delta t} \]

PROS:
- only need 1Hz data rate for TEC irregularities.
- S4 and \(\phi_4 \) need data sampled at higher frequency (20 Hz or higher).

S4 and ROTI are highly dependent!

Kernel Density Estimation

\[\text{Normalized Prob. Density} = \frac{1}{\text{BH 10-min. std. V.S. ROTI}} \]

The occurrence rate of TEC irregularities is more sensitive to BH and BD fluctuations.

Summary
- The CNM algorithm can mitigate the multipath and other error terms in the GPS range equation, better estimating the slant TEC and TEC fluctuations along the path.
- It can be further used to evaluate the scintillation activity with cheaper computing cost and open the possibility of using dense networks of inexpensive GNSS TEC monitors.

Acknowledgments
This research was supported by NSF grant AGS-1552286, part of the CEDAR program under the direction of Prof. Scott Palo. It also acknowledges Brian Brents for his assistance for the CNM algorithm.