High latitude space weather effects from an Incoherent Scatter Radar (ISR) point of view

Anja Strømme
SRI International
anja.stromme@sri.com
What is Space Weather?

“The conditions on the sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and endanger human life or health.”
Impact of Space Weather on Human Activities

- Satellites
- Power grids
- Humans in space
- Radios

June 2008
InSAR interferometry through a variable ionosphere
InSAR imaging

Anja Strømme, CEDAR Utah, 16. June 2008
InSAR Imaging

Anja Strømme, CEDAR Utah, 16. June 2008
In order to nowcast and forecast space weather in our near Earth environment we need:

– Reliable and sufficient observations of plasma processes on all scales over extended time periods.
– Accurate theories on what is linking the processes together.
– Robust models.
– Lots of computing power.
Where does Incoherent Scatter Radars fit into this?

- High quality range resolved geophysical data.
- Measurements (almost) independent of weather, seasons and space weather conditions.
- Extended time series of high resolution data for small scale dynamics to long term trends.
Variability on a several day scale

Note day-to-day variability in N_e

Precipitation effects

Ion heating events (Note T_i is almost independent of h at $h > 130$ km in events)

Anja Strømme, CEDAR Utah, 16. June 2008
“Sufficient measurements” - Location of the high latitude ISRs
What is all this about?

~1° beam width (a few km)
QuickTime™ and a decompressor are needed to see this picture.
International Polar Year Support

- EISCAT Svalbard Radar and PFISR are operating 24 hours per day in support of the IPY.
- Low duty-cycle, single beam mode at PFISR (some augmentation).
- Longest ever IS ionospheric dataset.
- Supposed to emphasize “quiet time variability” - coupling from below.

Anja Strømme, CEDAR Utah, 16. June 2008
Spring, Summer, Autumn, Winter

EISCAT Svalbard Radar IPY data
Anja Strømme, CEDAR Staff, 16 June 2008

A challenge to modelers:
The Future of Space Science: Coordinated Measurements

- **Long term climate and weather (Long Time Scales)**
 - International Polar Year (IPY)

- **Ionosphere-Magnetosphere coupling (Large Spatial Scales)**
 - Energy transfer to the ionosphere and atmosphere
 - Substorm triggering, etc.

- **Plasma structuring (Small Spatial and Short Time Scales)**
 - Auroral physics
 - Instabilities
 - Sporadic layers

- **Atmosphere-Ionosphere coupling (All Scales)**
 - Gravity waves, tides, forcing from below
 - Mesospheric phenomena
Combined velocities

Anja Strømme, CEDAR Utah, 16. June 2008
MI Coupling - Motion of the Plasma Sheet

Equatorward moving region of enhanced flows with enhanced plasma sheet convection - SAPS

Lyons et al. [2008]

Anja Strømme, CEDAR Utah, 16. June 2008
Joule 2 and PFISR

Anja Strømme, CEDAR Utah, 16. June 2008
Imaging the aurora with PFISR

Anja Strømme, CEDAR Utah, 16. June 2008
Anja Strømme, CEDAR Utah, 16. June 2008

Courtesy of Thomas Butler

Ne 09:15:05 -- 09:15:19
90 degrees out of phase

Vadas and Nicolls (2007)

Variation of vertical wavelength with altitude tells us where the waves are dissipating (depositing energy) and also about the background neutral atmosphere - for the first time.

Source studies
atmosphere

Unambiguous winds/waves in lower atmosphere

Meridional

Zonal

Vertical
Coordinated THEMIS observations will be critical for identifying MI coupling issues like flow bursts, substorm initiations, etc.

Extensive THEMIS ground network
Summary

• In order to predict space weather we have to be able to describe the current state ("nowcasting").
• IS radars are very important contributors in providing high quality ionospheric data on a variety of scales.
• Space weather effects are truly global - as must our approach to understand it be.