Air-density-dependent model for analysis of air heating associated with streamers, leaders, and transient luminous events

Transient Luminous Events and TGFs
Lightning Effects on the Upper Atmosphere

Jérémy A. Riousset1,2 Victor P. Pasko2 Anne Bourdon3

1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
2CSSL Laboratory, Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, USA
3EM2C UPR 288 Ecole Centrale Paris, Chatenay-Malabry, 92295, France

June 28, 2011
2011 CEDAR Workshop, Santa Fe, NM
1 Introduction

2 Model of Streamer-to-Spark Transition

3 Comparison with Experimental Results

4 Streamer-to-Spark Transition between 0 and 70 km Altitudes

5 Conclusions
Outline

1 Introduction

2 Model of Streamer-to-Spark Transition

3 Comparison with Experimental Results

4 Streamer-to-Spark Transition between 0 and 70 km Altitudes

5 Conclusions
Observations of Upward Discharges

- Lyons et al., 2003
- Boeck et al., 1995
- Wescott et al., 2001
- Van der Velde et al., 2007
- Su et al., 2003
- Pasko et al., 2002
- Kuo et al., 2008
- Krehbiel et al., 2008
- Cummer et al., 2009
- Riousset et al.

Introduction Model Formulation Comparison with Data Scaling with Altitude Conclusions References
Streamer-to-Leader Transition in Jets

Figure: (a) A black and white image of a 2-min time exposure of a blue jet [Wescott et al., 2001]. (b) Processed image obtained by averaging of sequence of video fields from observations reported in Pasko et al. [2002].

▷ Streamer structure of jets was first suggested by Petrov and Petrova [1999].
Outline

1 Introduction

2 Model of Streamer-to-Spark Transition

3 Comparison with Experimental Results

4 Streamer-to-Spark Transition between 0 and 70 km Altitudes

5 Conclusions
Mechanisms of Conductivity Increase [Naidis, 1999]

Thermal Mechanism

1. Heated gas expands
2. Gas number density is lowered
3. Ratio E/N increases
4. Ionization rate grows
5. Conductivity increases

Kinetic Mechanism

1. Active particles (radicals and excited molecules) accumulate
2. Detachment, electron impact ionization of radicals and associative ionization accelerate
3. Balance between rates of generation and loss of electrons changes
4. Conductivity increases

Depending on the regime, one mechanism dominates.
Model of Streamer-to-Spark Transition: 1-D Gas Dynamics Model

- 1-D axisymmetric model
- Vibrational-translational relaxation processes
- Fast heating of air in the streamer channel

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) &= 0 \\
\frac{\partial (\rho \vec{v})}{\partial t} + \nabla \cdot (\rho \vec{v} \vec{v}) &= -\nabla p \\
\frac{\partial \varepsilon}{\partial t} + \nabla \cdot \{(\varepsilon + p) \vec{v}\} &= \eta_T Q_e + Q_i + Q_{VT} \\
\frac{\partial \varepsilon_v}{\partial t} + \nabla \cdot (\varepsilon_v \vec{v}) &= \eta_V Q_e - Q_{VT}
\end{align*}
\]

- \(Q_e, Q_i,\) and \(Q_{VT}\) depend on \(n_0, n_{O^+}, n_{O_4^+}, n_{O_2^+N_2}, n_{O^-}, n_{O_2^-}, n_{O_3^-},\) and \(n_e\) derived from the kinetics model
Model of Streamer-to-Spark Transition: 0-D Chemical Kinetics Scheme

- 15 components:
 - Neutral particles: \(N_2, O_2, O, N, NO, N_2(A^3\Sigma^+_u), N_2(B^3\Pi_g), N_2(C^3\Pi_u), N_2(a'^1\Sigma^-_u), O_2(a^1\Delta_g)\)
 - Positive ions: \(O^+, O_4^+, O_2^+ N_2\)
 - Negative ions: \(O^-, O_2^-, O_3^-\)
 - Electrons: \(e\)

- Effects of gains in electron energy in collisions with vibrationally excited nitrogen molecules on the rate constants of ionization and dissociative attachment processes [e.g., Benilov and Naidis, 2003]

- Self-quenching of \(N_2(A^3\Sigma^+_u)\)

- Associative ionization of \(N_2(A^3\Sigma^+_u)\) and \(N_2(a'^1\Sigma^-_u)\)

- General balance equation:

\[
\frac{dn_e}{dt} = (F_{\text{ion}} + F_{\text{step}} + F_d - F_{a_2} - F_{a_3} - F_{\text{rec}}) \ n_e
\]
Comparison with Experimental Results

Figure: (left) Experimental and model streamer-to-spark transition times for various applied voltages. The solid lines represent the transition times under normal pressure ($p=10^5$ Pa) and reduced pressure ($p=0.75 \times 10^5$ Pa). (right) Same model and experimental data as in left panel but using reduced values of the applied field (EN_0/N) and of the transition times ($\tau_{br} N/N_0$).
Outline

1. Introduction
2. Model of Streamer-to-Spark Transition
3. Comparison with Experimental Results
4. Streamer-to-Spark Transition between 0 and 70 km Altitudes
5. Conclusions
Streamer-to-Spark Transition at 0 and 70 km Altitudes

Figure: Streamer-to-spark transition time at 0 km (left) and 70 km (right) altitudes.
Streamer-to-Spark Transition at 0 and 70 km Altitudes

Figure: Distribution of the reduced gas density on the radial coordinate for $EN_0/N = 19$ kV/cm at 0 km at $t=0$, 0.3, 0.6, and 0.9 μs (left), and at 70 km at $t=10$, 20, 30, and 40 ms (right).
The major cause of spark formation:

- Heated gas expansion
- Accumulation of oxygen atoms and other active species [Naidis, 1999]
- Increase with time in the electron detachment rate
- Existence of two- and three-body processes

Figure: Streamer-to-spark dynamics at sea level for $EN_0/N = 19$ kV/cm.
Streamer-to-Spark Transition at 70 km Altitude

The major cause of spark formation:

- Gas expansion negligible
- Accumulation of oxygen atoms and other active species [Naidis, 1999]
- Increase with time in the electron detachment rate
- Disappearance of three-body processes

Figure: Streamer-to-spark dynamics at 70 km for $EN_0/N = 19$ kV/cm.
Scaling with Air Density

Figure: Scaling of the breakdown times as a function of the neutral density for various applied electric fields and altitudes (0, 30, 50, and 70 km).

\[\tau_{br} \propto \frac{1}{N^{-1.11}} \]

- faster than the timescale of Joule heating \((\propto N^{-2}) \)
- slower than that of the vibrational–translational relaxation \((\propto N^{-1}) \)
Outline

1. Introduction
2. Model of Streamer-to-Spark Transition
3. Comparison with Experimental Results
4. Streamer-to-Spark Transition between 0 and 70 km Altitudes
5. Conclusions
 - Principal Contributions
 - Acknowledgements
The principal results and contributions, which follow from the studies presented in this work, can be summarized as follows:

1. A 1-D axisymmetric air density dependent model of streamer-to-spark transition is introduced.

2. The streamer-to-spark transition model results are successfully compared to experimental data obtained by Černák et al. [1995] and Larsson et al. [1998] at ground and near ground pressures.

3. For a broad range of air densities (between altitudes 0 and 70 km) studied the streamer-to-spark transition time is demonstrated to scale with neutral density approximately as: $\tau_{br} \propto 1/N$ therefore exhibiting a significant acceleration of the heating at low air densities in comparison with $1/N^2$ scaling predicted on the basis of simple similarity laws for Joule heating.
Acknowledgements

Thank You For Your Attention Questions?

This work is available online at: http://web.me.com/riousset/

Cite as:

This research was supported by the National Science Foundation under grant AGS-0652148 to Penn State Univ.
References

