Modeling of Gravity Wave and Instability Processes
in the Middle Atmosphere

Dave Fritts

Laboratory for Atmospheric and Space Physics
University of Colorado, Boulder, CO

with colleagues

Øyvind Andreassen
Steve Arendt
Joe Isler
Jim Garten
Teresa Palmer
Mike Gourlay
Outline

1. Motivations for MA Instability Studies
2. Model Formulation
3. Instability due to Wave Breaking
4. Kelvin-Helmholtz Instability
5. Conclusions
Modeling Motivations

- Wave transports of energy and momentum are central to our understanding of middle atmosphere dynamics

- Wave interaction and instability processes account for wave saturation, spectral character, and constraints on energy and momentum fluxes

- Dynamics of transition from laminar to turbulent flow dictates character of turbulence, efficiency of mixing and transports
Model Formulation

- Solves Euler equations with spectral viscosity

- Employs spectral collocation techniques
 - Fourier in x, y
 - Chebyshev in z

- Uses domain decomposition for higher resolution, greater efficiency
 - wave breaking using two domains
 - forcing in low-resolution lower domain
 (96, 48, 65)
 - instability in high-resol. upper domain
 (192, 96, 129)
 - Kelvin-Helmholtz instability using four domains
 - Re = 200 to 2000

- 2D initial evolution, 3D instability evolution following noise insertion at finite amplitude

- Boundary and interface conditions
 - periodic in x, y
 - open in z, using upstream characteristics
Wave Breaking Simulations

- high-frequency wave in a shear flow
 - ~ 30 min period
 - ~ 24 km wavelength
 - ~ 1 km instability depth

- wave field evolution
 - initial instability is convective, streamwise
 - secondary instability is dynamical, spanwise and localized (3D KH)
 - evolution is rapid and transient, collapse to turbulence ~ 1 T_b
Wave breaking shown with isosurface of 0
wave breaking with isosurface of O
and of positive (red) and negative (blue)
streamwise vorticity
Eddy Kinetic Energy Equation

\[
\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) K_e + \frac{\partial}{\partial x} \langle p'u' \rangle + \frac{\partial}{\partial z} \langle p'w' \rangle
\]

\[
\approx -\hat{\rho} \langle u'u'_i \rangle \frac{\partial}{\partial x} \tilde{u}_i - \hat{\rho} \langle u'_i w' \rangle \frac{\partial}{\partial z} \hat{u}_i + \frac{\hat{\rho} g}{\theta} \langle \theta'w' \rangle
\]

Vorticity Equation

\[
\frac{d\omega_i}{dt} \approx \omega_j S_{ij} + \left\{ \frac{\nabla \rho}{\rho} \times \frac{\nabla p}{\rho} \right\}_i
\]

where

\[
S_{ij} = \frac{1}{2} (\partial_i v_j + \partial_j v_i)
\]
eddy momentum fluxes (domain averaged)

\[\overline{\nu'w'} \]

eddy heat fluxes (domain averaged)

\[\overline{0'w'} \]
Modeling of Breaking Gravity Wave

- Vortices rendered by $\lambda_2 < 0$ of $S^2 + R^2$, viewed from below
Baroclinic generation of vortices at $t=62.5$
Vortices at $t=67.5$, strain source of streamwise vorticity $(\omega_j S_{ij})_1$
Kelvin-Helmholtz Instability

- unstable shear flow in uniform stratification
 - \(U(z) = U_0 \tanh(z/h) \), \(U_0 = 28 \text{ m/s} \), \(h = 300 \text{ m} \)
 - wavelength \(~ 4 \text{ km}\)
 - \(Ri = \frac{N^2}{Uz^2} = 0.05 \)
 - \(Re = 200 \text{ to } 2000 \)

- KH evolutions
 - remain 2D, \(Re < 200 \)
 - secondary convective instability, \(Re > 250 \)
 - secondary dynamical instability, \(Re > 1000 \)
 - secondary instabilities
 - accelerate KH breakdown, restratification
 - mixing and transports are very different in 2D and 3D
Contour of $\theta = 1.035$ for $Re = 500$
Contours of positive (red) and negative streamwise vorticity for Reynolds number = 500
Re = 500 Potential Temperature

2D
Time = 8

3D
Time = 8

Time = 16

Time = 16

Time = 24

Time = 24

Time = 32

Time = 32

Time = 40

Time = 40

0. .72

0. .72
Re = 500 Spanwise Vorticity

2D
Time = 8

Time = 16

Time = 24

Time = 32

Time = 40

0. .72

3D
Time = 8

Time = 16

Time = 24

Time = 32

Time = 40

0. .72
Re = 500 Spanwise Vorticity

2D
Time = 48

Time = 56

Time = 64

Time = 72

Time = 80

3D
Time = 48

Time = 56

Time = 64

Time = 72
KH Mean Flow Evolutions

\[\langle uz \rangle \text{ Profile } \text{Re} = 500 \]

\[\overline{u(z)} \text{ Mean velocity profile } \text{Re} = 500 \]

\[\langle \theta z \rangle \text{ Profiles for } \text{Re} = 500 \]

\[\overline{\theta(z)} \text{ Re = 500} \]
Conclusions

- Wave breaking is inherently three dimensional
 - primary instability is convective in nature over large range of wave frequencies
 - secondary dynamical instability (KH in 3D) arises due to stretching of vortex sheets
 - vorticity dynamics drives transition to turbulence
 - intertwined vortex tubes
 - intense vortex interactions
 - vortex fraying, fragmentation => cascade of energy and enstrophy to smaller scales

- Kelvin-Helmholtz instability exhibits secondary instability
 - convective, streamwise instability, Re > 250
 - dynamical, spanwise aligned inst., Re > 1000
 - 2D and 3D evolutions have very different
 - vorticity dynamics
 - implications for mixing and transports