Optical Signatures of the Outer Radiation Belt Boundary

Nithin Sivadas, Joshua L. Semeter, Toshi Nishimura, Sebastijan Mrak
Centre for Space Physics and Department of Electrical and Computer Engineering, Boston University
Contact: nithin@bu.edu

1. Abstract

We present observations that show structured diffuse aurora (SDA) correlated with precipitation from the outer boundary of the outer radiation belt. Electrons of 100–300 keV lost from the boundary can cause ionization down to 70 km (Ionospheric D-region) and can result in enhanced ionospheric conductance. Previous studies have not revealed clear optical signatures associated with the radiation belt boundary during substorm growth-phases. The Global airglow (GLOW) model shows significant optical contri-butions (up to 49%) from electrons >30 keV within the SDA. Ground- and space-based measurements are consistent with the conclusion that the SDA marks the outer radiation belt boundary during substorm growth-phase. Results show a remote-sensing the radiation belt boundary and studying its effect on the ionosphere.

2. Motivation

Optical signatures of plasma boundaries in the magnetosphere are useful indicators of the magnetospheric configuration. The plasma and energy flowing through them are of interest from an M-I coupling perspective. Enhanced ionization due to precipitation, can be measured using riometers and incoherent scatter radars (ISR), however, they have a narrow field of view (FOV). All-sky cameras on the other hand can observe optical signatures of precipitation over a large FOV. Hence we set out to 1) Identify optical signatures associated with the radiation belt boundary in all-sky cameras and 2) Investigate the source mechanism leading to the precipitation.

Significance

Quantifying the contribution of radiation belt precipitation towards detectable optical emissions is important in understanding sources of aurora. The ionospheric effects of the precipitation, e.g. enhanced D-region ionization and increased ionospheric conductance, can add substantial corrections to global precipitation and conductance models. The structural, and energy spectra of the precipitation, can be used as a remote-sensing tool for the outer radiation belt boundary location as well as the plasma processes within it.

3. Previous Work

Energetic precipitation during substorm growth-phases from the outer radiation belt boundary has been previously identified using LEO spacecraft. Termed Energetic Electron Arc (EEA), they are understood to be caused by current-sheet scattering—identified by their characteristic lattitudinal energy dispersion signature [2]. Ionospheric signatures of these precipitations were observed through riometers as ‘absorption arc’ with enhanced D-region conductivity. They were discussed as a signature of the ‘stable trapping boundary’ by Kirkwood & Eliasson [3]. However, optical signatures associated with the EEA have not been identified in previous literature except for one mention of a faint optical arc in overexposed images coincident with an absorption arc by Ogoyenoth et al. [4]. No direct connection or correlation between optical signatures in the ionosphere and the radiation belt precipitation have been established yet.

4. Methodology

- The energetic precipitation was identified from low-altitude ionization reaching >70 km with Poker Flat Incoherent Scatter Radar Scatter (PFSR) during a substorm growth-phase on 26 March 2008.
- The precipitation was identified also within the magnetosphere using electron flux measurements from NOA-17 in LEO.
- The T96 magnetic field model was used to map its source to be within the night-side transition region.
- THEMIS and E spacecraft near the equatorial plane were used to evaluate the magnetic field model accuracy.
- 2-D electron flux maps of precipitation were estimated using PFSR ionization profiles [5] and were used to identify the source of the precipitation.
- Optical cameras observed the optical emissions of the SDA. Its correlation with energetic electron flux was established using a spatial correlation analysis.
- The GLOW model was used to estimate the contribution of energetic electrons to the optical emissions measured by the cameras.

5. Overview

11:15 UT: Magnetic Field Geometry & Instrument Locations

6. Results

Energetic Electron Precipitation during Growth-phase caused by Current Sheet Scattering

Panel a) of the above figure shows a keogram within PFISR field of view (FOV). The three lines are latitudes of the peak energy flux of precipitating electrons of 30, 70 and 100 keV. There is a latitudinal view (FOV). The three lines are latitudes of the peak energy flux of precipitating electrons of 30, 70 and 100 keV. There is a latitudinal view (FOV). The three lines are latitudes of the peak energy flux of precipitating electrons of 30, 70 and 100 keV. There is a latitudinal view (FOV). The three lines are latitudes of the peak energy flux of precipitating electrons of 30, 70 and 100 keV. There is a latitudinal view (FOV). The three lines are latitudes of the peak energy flux of precipitating electrons of 30, 70 and 100 keV. There is a latitudinal view (FOV).

Precipitating Energetic Electrons contribute substantially to Optical Emissions

Panel b) shows the emission intensities of 4278 Å produced by electrons >30 keV and >100 keV estimated using energy fluxes from PFISR as input to the GLOW model. Electrons >30 keV generate a maximum of about 400 Rayleighs (46% of total emissions), Precipitating Electrons of 30, 70 and 100 keV. There is a latitudinal view (FOV).

Panel c shows quantitative estimates of the energy flux, with >30 keV electrons reaching ~1 mR (≈-1 mR; which is considered high enough to be detectable by standard white light cameras. Electrons >30 keV have higher energy fluxes ~3 mR, which implies that they dominate the optical emissions. The electrons >30 keV are likely part of the radiation belt population, while electrons <30 keV are part of the plasmasheet.

Optical Signatures correlated with the Outer Radiation Belt Boundary

Panel d) shows the spatial correlation coefficient of energy flux of different energies with optical emissions. In the early growth-phase, higher energy precipitation (>100 keV) is correlated with the optical emissions. From 11:12 UT the fine structures of the structured diffuse aurora is correlated ~100 keV electrons with the correlated energy decreasing with time. This is consistent with the latitudinal energy dispersion within the SDA, manifesting in time (11:12-11:24 UT) as the aurora moves equator-ward at a rate of ~5 km/h over the PFISR FOV. Note that the optical emissions are also correlated with ~100 keV electrons during the same time. These are likely scattered from the inner plasma sheet that overlaps with the outer boundary of the radiation belt, and continues poleward.

Panel e) shows a different growth phase event on 18th Oct 2010, during which one can see the different electron populations and their relative positions within respect to the SDA. The outer radiation belt boundary and the interface region coincides with the SDA, while most of the inner plasma sheet is poleward of it.

7. Conclusion

- SDA during a strong substorm growth-phase marks the outer boundary of the radiation belt. This may be used as a remote-sensing diagnostic of the radiation belt boundary.
- 100–300 keV electrons precipitating from the region of the outer radiation belt boundary overlapping with the inner plasmasheet contribute up to 46% of the 4278 Å emissions.
- Current sheet scattering is one of the mechanisms that cause the precipitation. However, other acceleration mechanisms such as wave-particle interactions cannot be ruled out.
- The structure precipitation from the interface region between the outer radiation belt and inner plasmasheet may be a result of plasma wave instabilities in the thin current sheet.

References

[5] T96 magnetic field model was used to map its source to be within the night-side transition region.
[6] THEMIS and E spacecraft near the equatorial plane were used to evaluate the magnetic field model accuracy.
[7] 2-D electron flux maps of precipitation were estimated using PFSR ionization profiles [5] and were used to identify the source of the precipitation.
[8] Optical cameras observed the optical emissions of the SDA. Its correlation with energetic electron flux was established using a spatial correlation analysis.
[9] The GLOW model was used to estimate the contribution of energetic electrons to the optical emissions measured by the cameras.