Ground-based Thermospheric Wind Measurements: Sensitivity to Atmospheric Scattering

Brian J Harding (bhardin2@illinois.edu), Jianqi Qin, Jonathan J Makela
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL

Abstract
Recent measurements of surprising thermospheric wind features, such as apparent downward winds at midlatitudes during geomagnetic storms [Makela et al., 2014] and at low latitudes after sunset [Fisher et al., 2015], have raised questions regarding the reliability of ground-based thermospheric wind measurements. These measurements are made by observing the Doppler shift of optical airglow emissions. In this work, we develop a radiative transfer code to quantify the effect of scattering in the troposphere. We find that the storm-time apparent downward winds at midlatitudes are likely caused by atmospheric scattering. This is also a plausible explanation for low-latitude winds, but calibration uncertainties render this explanation inconclusive.

Atmospheric Scattering

- Instruments such as Fabry-Perot interferometers (FPIs) use the Doppler shift of airglow emissions to remotely sense upper atmospheric wind
- Scattering causes contamination from outside the field of view
- This contamination manifests as an apparent vertical wind in zenith-looking observations, especially during geomagnetic storms when large horizontal winds and airflow gradients are present
- Estimates of horizontal wind and temperature are also affected
- Abreu et al. [1983] predicted this phenomenon, but the idea was largely dismissed in subsequent literature due to their erroneous claim that temperature measurements are not affected

Scattering Model

- Airglow brightness distribution (all-sky camera)
- Aerosol optical depth and phase function (AERONET)
- Approximate zonal and meridional wind (FPI)

Radiative Transfer Model:
- Elastic scattering
- Aerosol (Mie) and molecular (Rayleigh) scattering
- Thin shell airglow source
- Method of successive orders of scattering to solve plane-parallel radiative transfer equations

Case Study 1: Midlatitudes during storms

- Large 100 m/s sustained apparent downward wind at midlatitudes observed during moderate storm (Dst = -60 nT), attributed initially to the effect of precipitating oxygen ions [Makela et al., 2014]
- Data-model comparison using collocated FPI and all-sky camera from Millstone Hill suggests that apparent downward winds are fully explained by atmospheric scattering (optical depth = 0.12)

Case Study 2: Low latitudes after sunset

- Repeatable, unexplained ~20 m/s post-sunset downward wind observed in the low latitude local summer [Fisher et al., 2015]
- Comparison of data and model using instruments in Cariri, Brazil suggests that atmospheric scattering may be the explanation (optical depth = 0.16)
- Uncertainties in all-sky camera calibration and aerosol properties prevent conclusive result

Conclusions

- A model has been developed to quantify the impact of atmospheric scattering on ground-based airglow measurements (e.g., by FPIs or all-sky cameras)
- Atmospheric scattering can explain apparent vertical winds seen at midlatitudes during storms, eliminating the O+ precipitation hypothesis
- Atmospheric scattering may explain post-sunset vertical winds seen at low latitudes, but there are large uncertainties in model inputs
- Other reported vertical wind measurements should be examined, such as those in the auroral region
- Future work includes developing an algorithm to correct for atmospheric scattering in vertical wind, horizontal wind, and temperature measurements, but preliminary work suggests this is not well-posed

Acknowledgements
This material is based upon work supported by the National Science Foundation under Grant No. NSF AGS 14-52291 and by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144245. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The authors thank data providers and instrument maintainers: C. Martinis and J. Baumgardner for all-sky cameras, J. Noto, D. Fisher, and R. Buriti for FPIs, and AERONET for aerosol material. The authors thank data providers and instrument maintainers: C. Martinis and J. Baumgardner for all-sky cameras, J. Noto, D. Fisher, and R. Buriti for FPIs, and AERONET for aerosol material. The authors thank data providers and instrument maintainers: C. Martinis and J. Baumgardner for all-sky cameras, J. Noto, D. Fisher, and R. Buriti for FPIs, and AERONET for aerosol material. The authors thank data providers and instrument maintainers: C. Martinis and J. Baumgardner for all-sky cameras, J. Noto, D. Fisher, and R. Buriti for FPIs, and AERONET for aerosol material.

References