"Sun-to-Atmosphere...Sure, Yet Still One Link Short: Results from the NSF Frontiers of Earth System Dynamics 'Sun-to-Ice' Project"

- or -

Start

How I Learned to Stop Worrying and Love Ionizing Radiation

Hate

2014 CEDAR Workshop, Seattle, WA

Harlan E. Spence
Institute for the Study of Earth, Oceans, and Space
University of New Hampshire
Galactic Cosmic Ray or Solar Energetic Proton (SEP) Impacts Throughout the Solar-Terrestrial System Including at Aircraft Altitudes

Are historic, extreme SEPs recorded in ice chemistry?
Initial Background and Motivation

• Initial work associated solar energetic proton (SEP) events with impulsive nitrate spikes in polar ice (Dreschhoff and Zeller, Solar Phys., 127, 333, 1990)
• Largest nitrate spikes aligned with known solar flares and with various historic large solar particle events
• Others (e.g., McCracken et al., 2001) propose SEPs penetrate to low atmospheric altitudes, converting O_3 into NO(y), subsequent downward transport, NO(y) snows out, and is entrained in polar ice

Is Carrington flare of 1859 observed in Greenland Summit ice core nitrate record?
The Association Accelerates

• Palmer et al. (GRL, 28, 1953, 2001), performed a statistical analysis of the frequency of NO(y) increases found in ice cores from Law Dome (66° S, 112° E; at an altitude of about 1300 meters but in a high precipitation area near the ocean)

• They compared average annual nitrate cycle as with annual nitrate cycles containing documented significant solar particles events

• They found that there may be a statistical significant association suggesting that there may be a solar contribution to the nitrate in polar ice → additional evidence for a causal relationship between SEPs and nitrate spikes in arctic ice
The Debate Develops

• They found no association of nitrate deposition with solar events
 • One solar proton event noted by Wolff et al. occurred in July and August 2004; it had a total integrated omni-directional >30 MeV proton fluence of 6.5 x 10⁶ cm⁻² - far below the notional established NO(y) detection threshold of 1.0 x 10⁹ cm⁻² (McCracken et al., 2001)
 • A GLE on 20 January 2005 had a >30 MeV omni-directional fluence of 1.0 x 10⁹ cm⁻², but Wolff et al. did not observe a time-associated NO(y) increase.

• Evidence against a causal relationship between SEPs and nitrate spikes in arctic ice → theoretical arguments about why not, as well
The Controversy Continues

• Kepko et al. (JASTP, 71, 1840, 2009) analyzed an independent “shallow core” from Summit, Greenland, expressly trying to assess initial association of nitrate spikes with SEPs

• They used continuous flow technique resulting in ~400 samples per year, as opposed to the ~10 samples per year in many earlier studies

• Well-resolved impulsive NO(y) increases for each of the large solar cosmic ray ground-level events in the 1940-1950 decade

• Spikes robust (seen in multiple core samples at same depth) and well resolved in time/depth; evidence for concurrent nitrate spikes in Antarctic ice cores (Windless Bight)
Arctic/Antarctic cores seem to see same large events (from Kepko et al., 2009)

Top: Nitrate data from the 2004 Greenland core with annotated solar events. (≈400 samples/year)
Bottom: Nitrate deposition from 1988-1989 Antarctic ice cores. (1.5 cm resolution = ≈20 samples/year)
The Controversy Crescendos

• Wolff et al. (GRL, 2012): “The Carrington event not observed in most ice core nitrate records”

• Analysis of multiple cores show no nitrate spike at “right time”

• Only (Zeller, McCracken) GISP H core has event in 1859 (and 2nd in 1865), while 2010 Zoe core from Summit and D4 core near Summit have spikes dated 1863 (and 2nd in 1869)

• Zoe and D cores had full chemistry, allowing for multi-parameter dating and ammonium detection (biomass burning tracer)
From Controversy toward Resolution

• Speculation that the 1859 event in H core is same as 1863 event seen in cores dated with more constraints

• Likely that H core had similar ammonium enhancement (but only conductivity and nitrate were measured, so don’t know)?

• From Wolff Abstract: “We conclude that an event as large as the Carrington Event did not leave an observable, widespread imprint in polar ice. Nitrate spikes cannot be used to derive the statistics of SEPs.”

• Dating issues contested by Smart and Shea at 2012 Extreme Space Weather Event Workshop

• Sun-to-Ice project has been catalyst for communities to talk and work together toward resolution of controversy
“Sun-to-Ice” Project Aims for Closure

• The UNH-led “Sun-to-Ice” (S2I) project funded in late 2011 as part of the US/NSF Frontiers in Earth Systems Dynamic program

• S2I confronts the chain of controversial processes that couple the Sun-Earth system during extreme space weather events, from:

 • solar eruptive phenomena; to
 • CME evolution; to
 • shock formation; to
 • solar particle acceleration; to
 • SEP transport and access to upper atmosphere; to
 • SEP chemistry in middle atmosphere, and finally to
 • the controversial link between atmospheric NO(y) and nitrates in arctic ice
A Highly Interdisciplinary “Sun-to-Ice” Team

- S2I includes solar, heliospheric, magnetospheric, upper atmospheric, and ice core scientists tackling various aspects of the coupled system using a combination of theory, modeling, and experimental work

<table>
<thead>
<tr>
<th>Key Investigators, Institutions, and Titles</th>
<th>"Sun-to-Ice" Role(s) and Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harlan Spence, UNH, EOS Director & Prof.</td>
<td>Project Director (PD); project science lead; ice analysis</td>
</tr>
<tr>
<td>Nathan Schwadron, UNH, Assoc. Prof.</td>
<td>Deputy PD; coupling coordinator; SEP modeling</td>
</tr>
<tr>
<td>Pete Riley, PredSci CFO, Senior Scientist</td>
<td>CME initiation and evolution co-lead</td>
</tr>
<tr>
<td>Jon Linker, Predsci, Pres, Senior Scientist</td>
<td>CME initiation and evolution co-lead</td>
</tr>
<tr>
<td>Spiro Antiochos, NASA/GSFC</td>
<td>CME initiation theory</td>
</tr>
<tr>
<td>Terry Forbes, UNH, Res. Professor</td>
<td>CME initiation theory</td>
</tr>
<tr>
<td>Joe Giacalone, UAz, Assoc. Professor</td>
<td>SEP modeling lead</td>
</tr>
<tr>
<td>Mihiir Desai, SwRI, Staff Scientist</td>
<td>SEP observations and analysis</td>
</tr>
<tr>
<td>Gang Li, UAH, Assist. Professor</td>
<td>SEP Accel. Microphysics, PATH Code</td>
</tr>
<tr>
<td>Stan Solomon, NCAR, Senior Scientist</td>
<td>Atmospheric modeling lead</td>
</tr>
<tr>
<td>Cora Randall, CU ATOC/ LASP, Professor</td>
<td>Atmospheric observations constraining WACCM</td>
</tr>
<tr>
<td>Dan Marsh, NCAR, Scientist III</td>
<td>Atmospheric WACCM modeling development</td>
</tr>
<tr>
<td>Charley Jackman, NASA/GSFC</td>
<td>Atmospheric modeling</td>
</tr>
<tr>
<td>Michael Wiltberger, NCAR, Scientist III</td>
<td>Atmospheric SEP cutoffs; MHD geospace models</td>
</tr>
<tr>
<td>Jack Dibb, UNH Res. Associate Professor</td>
<td>Polar ice analysis lead</td>
</tr>
<tr>
<td>Ruth Varner, UNH Res. Associate Professor</td>
<td>Director of CEGE, Geoscience Education lead</td>
</tr>
<tr>
<td>Erik Froburg, Outreach and Education Specialist</td>
<td>Outreach and Education Specialist, Graduate Student Mentor</td>
</tr>
</tbody>
</table>
S2I Focus Area #1:
Space-Age SEP Events and Ice Core Chemistry

- Identify recent space-age, large SEP events for which we have excellent spacecraft and ground observations of SEP properties
- Compare these periods with daily snow pit data sampled at Summit
- Identify events most probably associated with non-SEP sources (biomass burning, sea salt, dust, pollution) using chemical tracers
- Assess whether any remaining events are SEP-source candidates and if/whether they can be explained with NCAR’s WACCM
Nitrate deposition at Summit, Greenland following the November 9, 2000 solar proton event

This study screens two years of surface snow measurements at Summit, Greenland for tropospheric sources of nitrate using ion correlations (NH$_4^+$, SO$_4^{2-}$, Na$^+$, Ca$^{2+}$). Global climate model simulations (WACCM) are used to assess the contribution of solar proton events to nitrate spikes not accounted for by ion correlations.
A stable polar vortex isolates air.

NO\textsubscript{x} diabatically descends over winter pole.
Nitrate spikes in Summit snow (2000-2002) not accounted for by soluble ion correlations. *(Candidates for SPE events)*

Focus WACCM simulations on Nov 22-24, Dec 13, and Jan 25, spikes occurring in polar winter that are not attributed to tropospheric sources.
9 November 2000 SPE (WACCM)

Vortex-Averaged Total Odd Nitrogen (NO$_y$)

NO$_y$ = NO + NO$_2$ + NO$_3$ + 2N$_2$O$_5$ + HNO$_3$ + HO$_2$NO$_2$ + ClONO$_2$ + BrONO$_2$

Diabatic descent within polar vortex.

Thick background pool of 10-15 ppbv NO$_y$ in lower stratosphere

Thin layer (~5 km) of 5-10 ppbv SPE-enhanced NO$_y$ at 25-30 km

Slow downward transport

Densities of NO$_y$ peak below 20 km
SPE enhancement (5% vortex-averaged and 20% local maxima) is *not large enough* to explain the 4-5 fold spikes in nitrate ions in snow and ice.
Consider the largest SPE in past 50 years...

- **Sep-Oct 1989 SPEs** placed in a stable polar vortex winter (2004-5)
- **10 times Sep-Oct 1989 SPEs** placed in 2004-2005

\[\text{NO}_y\text{ enhanced by } \sim 10\% \text{ (maximum local 20\%) with Sep-Oct 1989 SPEs.}\]

\[\text{NO}_y\text{ enhanced by 60-70\% (maximum local 100\%) with 10x Sep-Oct 1989 SPEs}\]

Total column NO}_y\text{ enhancement not sufficient to explain 4-5 fold nitrate spikes at the surface.
1989 Sep-Oct SPEs in 2004-2005 winter
Vortex-averaged NO$_y$

Background 5-15 ppbv NO$_y$ in lower stratosphere.

Peak number density occurs below 20 km

Thin layer of enhanced NO$_y$ around 30-35 km.

10-20 ppbv for Sep-Oct 1989 SPEs
> 50 ppbv for 10x Sep-Oct 1989 SPEs
Conclusions

- **SPEs significantly increase reactive nitrogen and decrease ozone** in the stratosphere following November 2000 events.
- **No convincing evidence that SPEs are related to impulsive nitrate spikes.**
- Tropospheric sources provide an alternative explanation for nitrate spikes at Summit during the winter of 2000-2001.

Remaining Sun-to-Ice Questions

- **How large would an SPE have to be** to produce discernable nitrate spikes at the surface, given the limits of solar flare energy?
- **Longer-term variations** in nitrate related to solar activity continue to be of interest (Gleissberg cycles, millennial variations, etc.).
- **Are there alternative proxies** for SPEs in the ice core or other geologic records? On what timescale can cosmogenic radionuclides (e.g., 14C and 10Be) or other isotopes be used to study solar variability?