Characteristics of Self Acceleration driven Gravity Wave Instabilities

Brian Laughman, Dave Fritts, *GATS, Inc.* Tom Lund, *NWRA*

50 Years of Gravity Wave Research

a Tribute to Colin Hines

June 25th, 2013
Self Acceleration Dynamics

• What is Self Acceleration?
• Modeling Efforts
• Characteristics of Self Acceleration
 – 2D vs. 3D instabilities
 – Viscous dependence
 – Frequency dependence
 – Amplitude dependence
 – Horizontal wavelength dependence
 – Multiple breaking events
• Conclusion
What is Self Acceleration?

Gravity wave / mean flow interactions:
• Wave Breaking
• Viscous coupling
• Self Acceleration

Self Acceleration:
➢ Conservative, Transient
➢ Momentum flux divergence leads to mean flow acceleration
➢ Peak flux offset from peak response

![Graphs and images showing wave breaking and mean flow interactions.](image-url)
Evolving Mean: Self Acceleration GW Breaking
Fixed Mean: Gravity Wave Breaking
Modeling Efforts

Anelastic Navier-Stokes model
- No sounds waves
- Accounts for density variation with height

Current results
- Runs are isothermal (*slightly non-physical breaking altitudes*)
- Runs initialized with a headwind
- Runs initialized with a 2D wave packet periodic in the horizontal and confined in the vertical
- For 3D runs low level noise is added to seed spanwise instability
Evolving Mean: 2D precedes 3D instability onset

streamwise

spanwise
Fixed Mean: 2D and 3D instability nearly concurrent

streamwise

spanwise
Self Acceleration: u, w, T, and vorticity magnitude

Velocity fields
- u'
- w'

Potential Temperature
- Vorticity Magnitude
Self Acceleration: Viscous effects

Self Acceleration Breaking largely ignores viscous effects

Vorticity magnitude

Packet initialized at 60 km

Packet initialized at 10 km
Self Acceleration: Frequency dependence

Multiple frequencies, same amplitude
• Breaking altitude frequency dependent
• Shape of instability apparently independent
• Role of dispersion?

\[A = \frac{u'}{c_x} \]
Self Acceleration: Amplitude dependence

- Breaking altitude amplitude dependent
- Shape of instability apparently independent
Self Acceleration: Dispersive effects?

Amplitude Growth with Altitude:

\[
A(z) = A_0 \exp\left[-\frac{(z - z_0)}{2h}\right]
\]

\[
z_T - z_0 = 2h \log\left[\frac{A_0}{A_T}\right]
\]

Works for \(N/1.414\)

- for \(N/2\), “2” = 2.5
- for \(N/3\), “2” = 4.6

Not fully understood

Preliminary values
Self Acceleration: Length scale dependence

- Horizontal wavelength affects appearance of SA breaking
- Horizontal wavelength also affects time to onset; group velocity
Self Acceleration: One wave, multiple breaking zones
Conclusions:
• Natural consequence of vertical wave propagation
• Effective Gravity Wave instability mechanism
• Dynamic signature largely determined by horizontal wavelength

Future Work:
• Characterize the potential role of dispersion
• Parameterize relationship between sources to events

• Consider realistic background environments
• Localize forcing in streamwise
• Localize forcing in spanwise, consider 3D consequences

• Comparison with observation (the future is now)