Using the development process of the Venus Global Ionosphere-Thermosphere Model to understand the importance of planetary attributes on Earth’s atmosphere

Emily L. Judd — Faculty Advisor: Aaron Ridley — University of Michigan: Climate and Space Sciences and Engineering — CEDAR — 21 June 2017

Abstract

The Global Ionosphere-Thermosphere Model (GITM) has been used to model the atmosphere of Earth, with various versions for studies of Mars, Jupiter, and Titan. Currently, a version for Venus is under development. During this process, we will conduct systematic studies of how the Earth’s atmosphere would change when given certain characteristics of Venus. The Venus model (V-GITM) development includes systematic parameter variances of certain key planetary attributes such as distance from the Sun, planetary axis tilt, and rotation and revolution rates. The lack of an intrinsic magnetic field will also be implemented, along with an atmosphere composition of high carbon dioxide levels and different ratios of minor species. This methodical approach to creating an atmospheric model of Venus will allow for a closer look at the importance of planetary characteristics on Earth’s atmosphere.

In this poster, two planetary attributes will be discussed. Simulations have been conducted on planetary axis tilt and rotation rate, highlighting the differences between Earth and Venus.

Motivation

Goals:
- Develop a version of GITM for Venus
- Investigate how varied planetary attributes affect the atmosphere

Objectives:
- Examine how varying planetary axis tilt affects the atmosphere
- Explore how varying planetary rotation rate affects the atmosphere

Development Process

Simulation Setup
- Created GITM development version
- Modified the model to include an option for Venus

Axial Tilt Test Parameters
- Planetary characteristics
- Venusian rotation period: 5382.6 hours, counterclockwise
- Venusian days per Earth year: 1.503
- Venusian axial tilt: 2.64 degrees

Simulation timeframe
- 20 June 2008 through 23 June 2008
- Solstice timeframe allowed maximum tilt effect

Rotation Period Test Parameters
- Planetary characteristics
- Rotation period: 6–1000 hours
- Days per year: 0.36–1461
- Venusian axial tilt: 2.64 degrees

General simulation timeframe
- 20 March 2008 through 21 March 2008
- Equinox timeframe negated tilt effect during rotation rate tests

Special cases
- Certain tests were run for an extended timeframe, especially the more extreme cases
- 20 March 2008 through 23 March 2008
- Tests 7, 9, 10, and 11 and control

Table 1: Rotation Period Test Parameters

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Ratio to Earth</th>
<th>Rotation Period (hours)</th>
<th>Days per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>27</td>
<td>365.25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>48</td>
<td>182.65</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>96</td>
<td>91.31</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>240</td>
<td>36.525</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>2400</td>
<td>3.65</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>4800</td>
<td>1.826</td>
</tr>
<tr>
<td>7</td>
<td>243.025</td>
<td>5382.6</td>
<td>1.503</td>
</tr>
<tr>
<td>8</td>
<td>400</td>
<td>9600</td>
<td>0.913</td>
</tr>
<tr>
<td>9</td>
<td>1000</td>
<td>24,000</td>
<td>3.6825</td>
</tr>
<tr>
<td>10</td>
<td>0.25</td>
<td>6</td>
<td>1461</td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
<td>12</td>
<td>730.5</td>
</tr>
</tbody>
</table>

Testing

Test 0: Control

Test 1: Rotation Rate 6.0 hours, Spring Equinox

Test 2: Temperature at 412 km

Test 3: Neutral Winds going up at 412 km

Test 4: Density at 412 km

Test 5: Neutral Winds going up at 412 km

Test 6: Density at 412 km

Test 7: Rotation Rate 24,000 hours, Spring Equinox

Test 8: Density at 152.6 km

Test 9: Rotation Rate 5382.6 hours (Venusian rate)

Test 10: Density at 152.6 km

Test 11: Rotation Rate 6.0 hours, Spring Equinox

Test 12: Temperature at 152.6 km

Test 13: Rotation Rate 5382.6 hours, Summer Solstice with Axial Tilt 2.64 degrees (Venusian 010)

Test 14: Density at 152.6 km

Test 15: Temperature at 152.6 km

Figure 1: Density at 412 km

Figure 2: Temperature at 412 km

Figure 3: Neutral Winds going up at 412 km

Figure 4: Density at 412 km

Figure 5: Neutral Winds going up at 412 km

Figure 6: Density at 412 km

Figure 7: Temperature at 152.6 km

Figure 8: Density at 152.6 km

Figure 9: Temperature at 152.6 km

Figure 10: Density at 152.6 km

Figure 11: Temperature at 152.6 km

Conclusions

Results at 412 km Altitude
- Faster rotation rates
- Density is not as dependent on time of day, instead it forms a band of higher density near the equator
- Temperature is still somewhat dependent on time of day, and cooler temperatures are still found at the poles
- Neutral winds going up are nearly 0 m/s

Results at 153 km Altitude
- Venusian rotation rates
- Density is dependent on time of day and is higher on the Eastern hemisphere
- Temperature is dependent on time of day and is higher on the Eastern hemisphere
- Neutral winds going up are slightly higher on the Eastern hemisphere

Future Work

More Detailed Simulations on Effects of Rotation Rate and Axial Tilt
- Run simulations for longer time periods
- Allow for clockwise planetary rotation
- Include additional axial tilts in between Earth and Venus
- Increase simulation resolution

Next Steps in Creating V-GITM
- Change additional planetary parameters
- Gravity force
- Planetary radius
- Magnetic field (if any hereafter)
- Planetary orbital characteristics
- Change atmospheric chemistry to reflect that of Venus
- Will use equations from the Venus Thermospheric General Circulation Model
- Test effects of running simulations at solar maximum and solar minimum

References


Acknowledgements

I would like to thank my advisor, Dr. Aaron Ridley, for encouraging me to pursue this research project. He has been instrumental in teaching me many of the skills necessary for this project, including using a Linux operating system and basic programming skills in Python, Fortran, and IDL. Several of his IDL codes were used in processing the simulation data and creating the images seen here.