Effects of Sudden Commencement on the Ionosphere: PFISR Observations and SWMF Simulation

Shasha Zou1, Doga Ozturk1, Roger Varney2, Ashton Reimer2, Aaron Ridley1

1. University of Michigan
2. SRI

2017 CEDAR Workshop
Ionospheric Response to 2015 St. Patrick Day Sudden Commencement

OMNI solar wind and Sym-H

PFISR and magnetometer

PFISR vertical profiles before and after the sudden commencement

- PFISR observed lifting of the F region ionosphere;
- transient field-aligned ion upflow;
- prompt but short-lived ion temperature increase;
- subsequent F region density decrease;
- persistent electron temperature increase.
FACs and Convection Pattern from Coupled BATSRUS MHD+CRCM Run

SWMF:
- used to characterize the SC-induced current, convection, and magnetic perturbations;
- provides a global context for linking localized PFISR observations to large-scale dynamic processes in the MI system.
Preliminary Results from BATSRUS +CRCM Driven GITM Run

- GITM was driven by BATSRUS+CRCM output in order to study the global ionosphere response to SC.
- Preliminary results show rapid heating of ionosphere plasma and F-region density depletion.
- We will continue quantify the various processes that would create such rapid density loss.
Summary and Conclusions

- During the SC of the 17 March 2015 storm, PFISR observed lifting of the F region ionosphere, large and transient field aligned ion upflow (type-1), prompt but short-lived ion temperature increase, F region density decrease and persistent electron temperature increase.
- The global BATSRUS MHD simulation revealed the distribution of large-scale FACs and their evolution and propagation through the polar cap.
- The MHD results are used to drive GITM to study the global effects of SC-related electrodynamics. Preliminary results show good agreement with radar observations.