NRLMSIS Atmosphere Temperature and Composition Model

- Arguments: Position, time, solar irradiance, geomagnetic activity
- Output: $T(z)$, T_{ex} (K); N_2, O_2, O, He, H, N, Ar (cm$^{-3}$); ρ (g cm$^{-3}$)
- Physical constraints: Approximate hydrostatic equilibrium; diffusive equilibrium above \sim200 km
- Formulation: Bates/spline vertical temperature profile; spherical and temporal harmonic expansion; polynomial in F10.7 and Ap heating function
- Major overhaul in progress

Acknowledgement: This work was supported by the Chief of Naval Research John Emmert, Doug Drob, David Siskind
Space Science Division, Naval Research Lab

Mike Picone
Department of Physics and Astronomy, George Mason University

Acknowledgement: This work was supported by the Chief of Naval Research
NRLMSIS History

- The Mass Spectrometer and Incoherent Scatter radar model (MSIS®) was created in 1977 by Alan Hedin at Goddard Space Flight Center, based in large part on Atmospheric Explorer data.
- It grew out of a 1974 statistical model of Ogo 6 mass spectrometer data.
- MSIS originally represented the upper thermosphere. Upgrades followed:
 - 1983: Rocket data, extended to lower thermosphere
 - 1986: DE-2 data, atomic nitrogen added, expanded formulation
 - 1990: Extended to ground
- After Alan Hedin retired from NASA in 1995, Mike Picone of NRL’s Space Science Division continued development of the model with Alan’s assistance.
- The current version, NRLMSISE-00, added mass density from satellite drag, O₂ data from solar occultation, and a new “anomalous O” species above 500 km.
NRLMSISE-00 Physical Constraints

\[\ln n_i = \ln n_{i,0} - (1 + \alpha) \ln \frac{T}{T_0} - \frac{m_i g_0}{k} \int_{\zeta_0}^{\zeta} \frac{1}{T(\zeta')} d\zeta' \]

- \(n_i = \) Species number density, \(T = \) Temperature
- \(m_i = \) Species mass, \(\zeta = \) Geopotential height,
- \(\alpha = \) Thermal Diffusion

\[\ln n = \ln n_0 - \ln \frac{T}{T_0} - \frac{m g_0}{k} \int_{\zeta_0}^{\zeta} \frac{1}{T(\zeta')} d\zeta' \]

- \(n = \) Total number density, \(\bar{m} = \) Mean mass

- Asymptotic temperature profile defined by exospheric temperature
- Fully mixed hydrostatic equilibrium below \(\sim 100 \) km
- Diffusive equilibrium (\(\sim \)species hydrostatic equilibrium) above \(\sim 200 \) km
- Approximate hydrostatic equilibrium between 100 and 200 km
- Temperature profile constructed so that the integral can be computed in closed-form
NRLMSISE-00 Formulation

- **Vertical temperature profile (17 parameters)**
 - Cubic splines in $1/T$ below 120 km (14 parameters)
 - Bates profile above 120 km (T_{ex}, T_{120}, σ)

- **Species density parameters (8 per species)**
 - Reference density (1)
 - Mixing ratio relative to N_2 (1)
 - Turbopause height (1)
 - Corrections for dynamic flow and chemistry (5)

- **Expansion of vertical parameters (up to ~140 per param.)**
 - Associated Legendre fns in latitude (up to degree 6)
 - Polynomials in daily and 81-day average solar activity ($F10.7$) up to order 2
 - Intra-annual harmonics up to semiannual
 - Local time harmonics up to terdiurnal (migrating tides)
 - Time history of geomagnetic activity (ap index) via heating function
 - Longitude harmonics up to order 1
 - Universal Time harmonics up to order 1

- **Total number of nonzero model parameters:** ~1280

- **Limitation:** Important nonmigrating tides not included – use CTMT

\[
T_{ex} - (T_{ex} - T_{120}) \exp\left[-\sigma (\zeta - \zeta_{120})\right]
\]
\[
\sigma = T'_{120} / (T_{ex} - T_{120}) \quad \text{Shape factor}
\]
NRLMSIS Data

New Data for NRLMSIS-17:
Orbit, accelerometer, ISR, and:

Satellite Drag:
Orbit-derived, accelerometer (ρ)

Altitude (km)

Mass Spectrometer (T, n_i)

Incoherent Scatter Radar (T)

Occultation (O_2)

MAP tables (~CIRA-86)

ISR (T)

Occultation (T)

ISR (T)

Reanalysis (T, P)

Ultraviolet (T, n_i)

Microwave (T)

Infrared (T, n_i)

Lidar (T)
NRLMSISE-00 Operation

GTD7 - Gets Temperature and Density:

\[
\text{GTD7}(\text{IYD}, \text{SEC}, \text{ALT}, \text{GLAT}, \text{GLONG}, \text{STL}, \text{F107A}, \text{F107}, \text{AP}, \text{MASS}, \text{D}, \text{T})
\]

Input:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IYD</td>
<td>YEAR AND DAY AS YYDDD (day of year from 1 to 365 or 366; year ignored)</td>
</tr>
<tr>
<td>SEC</td>
<td>UNIVERSAL TIME (s); should be consistent with GLONG and STL</td>
</tr>
<tr>
<td>ALT</td>
<td>GEODETIC ALTITUDE (km)</td>
</tr>
<tr>
<td>GLAT</td>
<td>GEODETIC LATITUDE (degrees)</td>
</tr>
<tr>
<td>GLONG</td>
<td>GEODETIC LONGITUDE (degrees)</td>
</tr>
<tr>
<td>STL</td>
<td>LOCAL APPARENT SOLAR TIME (hours)</td>
</tr>
<tr>
<td>F107A</td>
<td>81 day AVERAGE OF F10.7 FLUX (centered on day DDD)</td>
</tr>
<tr>
<td>F107</td>
<td>DAILY F10.7 FLUX FOR PREVIOUS DAY</td>
</tr>
<tr>
<td>AP</td>
<td>7-element array: Daily Ap, ap(t), ap(t-3h), ap(t-6h), ap(t-9h), Ap(12-33h), Ap(36-57h) First element used when SW(9) = 1, all elements used when SW(9) = -1</td>
</tr>
<tr>
<td>MASS</td>
<td>MASS NUMBER; 48 for all, 0, for temperature, 1 for H, 2 for He, 14 for N, etc.</td>
</tr>
</tbody>
</table>

Output:

<table>
<thead>
<tr>
<th>D = Number Density (cm(^{-3}))</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>He</td>
<td>O</td>
<td>N(_2)</td>
<td>O(_2)</td>
<td>Ar</td>
<td>(\rho)</td>
<td>H</td>
<td>N</td>
<td>Hot O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T = Temperature</th>
<th>(T_{\text{ex}})</th>
<th>T(z)</th>
</tr>
</thead>
</table>

\(\rho\) in g/cm\(^3\)
NRLMSISE-00 Operation

GHP7 -- Gets height of specified pressure level:
GHP7(IYD, SEC, ALT, GLAT, GLONG, STL, F107A, F107, AP, D, T, PRESS)

TSELEC – Sets model switches: 0 = off, 1 = on, 2 = main effects off but cross terms on
TSELEC(SW)

<table>
<thead>
<tr>
<th>Expansion Parameters</th>
<th>Vertical Profile Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW(1) Solar activity (F10.7)</td>
<td>SW(15) Departures from diffusive equilibrium</td>
</tr>
<tr>
<td>SW(2) Latitude dependence</td>
<td>SW(16) All T_{ex} variations</td>
</tr>
<tr>
<td>SW(3) Hemispherically symmetric annual oscill.</td>
<td>SW(17) All T variations at 120 km</td>
</tr>
<tr>
<td>SW(4) Symmetric semiannual</td>
<td>SW(18) All T variations between 72.5 and 120 km</td>
</tr>
<tr>
<td>SW(5) Asymmetric annual (seasonal)</td>
<td>SW(19) All shape factor (σ) variations</td>
</tr>
<tr>
<td>SW(6) Asymmetric semiannual</td>
<td>SW(20) All T variations between 32.5 and 72.5</td>
</tr>
<tr>
<td>SW(7) Diurnal oscillations</td>
<td>SW(21) All species density variations at 120 km</td>
</tr>
<tr>
<td>SW(8) Semidiurnal oscillations</td>
<td>SW(22) All T variations between 0 and 32.5 km</td>
</tr>
<tr>
<td>SW(9) Magnetic Activity (-1 for storm mode)</td>
<td>SW(23) All turbopause scale height variations</td>
</tr>
<tr>
<td>SW(10) All UT/Longitude</td>
<td>SW(24) Not used</td>
</tr>
<tr>
<td>SW(11) Longitude terms</td>
<td>SW(25) Not used</td>
</tr>
<tr>
<td>SW(12) UT and mixed UT/Longitude</td>
<td></td>
</tr>
<tr>
<td>SW(13) Mixed Ap/UT/Longitude</td>
<td></td>
</tr>
<tr>
<td>SW(14) Terdiurnal oscillations</td>
<td></td>
</tr>
</tbody>
</table>
Other Thermosphere Temperature and Density Models

<table>
<thead>
<tr>
<th></th>
<th>NRLMSISE-00</th>
<th>DTM-2015</th>
<th>JB2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Picone et al., 2002</td>
<td>Bruinsma, 2015</td>
<td>Bowman et al., 2008</td>
</tr>
<tr>
<td>Lower Boundary</td>
<td>0 km</td>
<td>120 km</td>
<td>90 km</td>
</tr>
<tr>
<td>Mesopause Density and Temperature</td>
<td>Variable</td>
<td>Variable at 120 km</td>
<td>Fixed</td>
</tr>
<tr>
<td>Temperature Profile</td>
<td>Bates exponential profile above 120 km. Cubic splines below 120 km.</td>
<td>Bates exponential profile.</td>
<td>Arctangent above 125 km, plus height-dependent local time and latitude corrections to T_{ex}. Polynomial below 125 km.</td>
</tr>
<tr>
<td>Solar Activity Variation</td>
<td>Temperature and density parameters depend quadratically on $F_{10.7}$*</td>
<td>Temperature and density parameters depend quadratically on F_{30*} the solar radio flux at 30 cm. wavelength</td>
<td>T_{ex} is linear function of 4 solar indices.</td>
</tr>
<tr>
<td>Local Time & Latitude Variation</td>
<td>Spherical harmonics (up to terdiurnal and latitudinal order 6) of temperature and density parameters, modulated by $F_{10.7}$*</td>
<td>Spherical harmonics (up to terdiurnal and latitudinal order 6) of temperature and density parameters, modulated by F_{30*}</td>
<td>Trigonometric function of local time, latitude, and solar declination applied to T_{ex} only, plus a correction above 200 km dependent on local time, height, latitude, and $F_{10.7*}$.</td>
</tr>
<tr>
<td>Intra-annual Variation</td>
<td>Annual and semiannual harmonics of temperature and density parameters, modulated by latitude (up to order 3). No explicit dependence on solar activity.</td>
<td>Annual and semiannual harmonics of temperature and density parameters, modulated by latitude (up to order 5), local time, and F_{30*}</td>
<td>Mass density variation only; annual and semiannual harmonics, with net amplitude dependent on altitude (quadratic polynomial) and modulated by three solar indices.</td>
</tr>
<tr>
<td>Geomagnetic Activity Variation</td>
<td>Temperature and density parameters are a function of either 3-hr ap history or daily Ap. Modulated by latitude and UT.</td>
<td>Parameters are a quadratic (density) or linear (temperature) function of the km index, modulated by latitude.</td>
<td>T_{ex} is a nonlinear function of the Dst history during storms, and of the 3-hr ap when a storm is not detected in Dst.</td>
</tr>
<tr>
<td>Longitude/UT Variation</td>
<td>Spherical harmonics up to wavenumber 2 in longitude, and diurnal UT terms. Modulated by geomagnetic activity.</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

* $F_{10.7}$ is a proxy for solar radio flux at 10.7 cm wavelength.
NRLMSIS Upgrade

- **New Data**
 - NOAA meteorological reanalysis data in the troposphere and stratosphere.
 - Extensive new temperature and composition data in the mesosphere and lower thermosphere (incl. TIMED/SABER, Aura/MLS, ACE, AIM/Sofie, Odin/OSIRIS, Lidar).
 - Extensive new orbit-derived accelerometer densities, UV remote sensing data, and ground-based FPI temperatures in the thermosphere.

- **Major Changes to Formulation**
 - Seamless transition from fully mixed to species hydrostatic equilibrium using variable effective mass (current model: nonphysical interpolation)
 - O profile: Splines below 80 km, modified Chapman layer near peak, species hydrostatic equilibrium above 200 km.
 - Solar EUV irradiance input (backward compatible with F10.7).
 - Overhaul of expansion of vertical profile parameters.
 - Use geopotential $\Phi(z,\phi)$ internally (current model uses $\Delta \Phi(z_1,z_2;\phi)$).

- **Progress**
 - New temperature model complete up to 80 km.
 - Full model to be completed in 2017.
NRLMSIS Upgrade: Test fits of O profile
(5° N, Day of year 150)

-- NRLMSISE-00
-- SABER Climatology
-- Fit with MSIS above 120 km, SABER below 80 km

Daytime (14 LT)

Nighttime (2 LT)

Species Hydrostatic Equilibrium with Variable Mass:

Modified Chapman Layer:

Cubic B Splines (decoupled from T)

\[
\ln n = \ln n_0 - \frac{g_0}{k} \int_{\zeta_0}^{\zeta} \frac{M(\zeta')}{T(\zeta')} d\zeta' - \ln \frac{T(\zeta)}{T(\zeta_0)} - C \exp \left[\frac{-(\zeta - \zeta_C)}{H_C} \right]
\]
NRLMSIS Upgrade: Mesosphere Temperature Residuals

NRLMSISE-00 vs. **New**

- **75-80 km altitude**

Graphs show temperature residuals over different time periods (LST: 6-12 and 12-18) and geographic latitudes (GLAT: 30-60, 0-30, -30-0, -60-90) for various stations and instruments.

- STA_INST = UARS_HALOE
- STA_INST = TIMED_SABER
- STA_INST = ODIN_OSIRIS
- STA_INST = LO_LIDAR
- STA_INST = FC_LIDAR
- STA_INST = BO_LIDAR
- STA_INST = AURA_MLS
- STA_INST = AN_LiDAR
- STA_INST = AL_LiDAR
- STA_INST = AIM_SOFIE
- STA_INST = ACE_FTS
NRLMSISE-00 Summary

- **Arguments**: Position, time, solar irradiance, geomagnetic activity
- **Output**: $T(z)$, T_{e_x} (K); N_2, O_2, O, He, H, N, Ar (cm$^{-3}$); ρ (g cm$^{-3}$)
- **Domain**: Ground to exosphere

Physical constraints:
- Asymptotic exospheric temperature
- Approximate Hydrostatic equilibrium
- Diffusive equilibrium above ~200 km

Data:
- Thermosphere: Mass spectrometers, incoherent scatter radars, accelerometers, orbit-derived mass density, solar occultation spectra
- Troposphere, stratosphere, mesosphere: Rocket-based measurements, tabulated lower atmospheric climatology

Formulation:
- Bates/spline vertical temperature profile
- Spherical and temporal harmonic expansion
- Polynomial in $F_{10.7}$ and Ap heating function

Major overhaul in progress:
- Extensive new data
- New formulation, including seamless transition from mixed to diffusive separation
- Temperature model complete up to 80 km; full model expected 2017