Community:Email 05jan12

From CedarWiki
Jump to: navigation, search

This is a generic mailing to the CEDAR community sent 05 January 2012. Meetings and jobs are listed at under 'Community' as 'Calendar of Meetings' and 'CEDAR related opportunities'. CEDAR email messages are under 'Community' as 'CEDAR email Newsletters'. All are in 'Quick Links' on the main page.

(1) Two Research fellowships in atmospheric chemistry at University of Leeds, UK - applications due 23 January. From John Plane (j.m.c.plane at See also

(2) Tenure track position in Space Weather at George Mason University, VI - applications due 31 January. From Bob Weigel (rweigel at See also (position number F8410Z) and

(3) Summer 2012 Air Force Research Laboratory Space Scholars Program for 4 graduate students at Kirtland AFB, NM - applications due 6 February. From Yi-Jiun.Su at See also

(1) Two Research fellowships in atmospheric chemistry at University of Leeds, UK - applications due 23 January.

From John Plane (

Two Research Fellowships in Atmospheric Chemistry in the School of Chemistry at the University of Leeds are available.

These positions are part of the 5-year advanced grant project “Cosmic Dust in the Terrestrial Atmosphere (CODITA)”, funded by the European Research Council. You will join an international team studying the evolution of dust from comets and its impact in the atmospheres of the Earth and other solar system bodies.

The first fellowship, on the Chemistry of Planetary Atmospheres, will have two research aims: to study the layers of metallic ions observed in planetary atmospheres, by measuring the rates of dissociative recombination of metallic molecular ions with electrons; and to develop a novel reactor for simulating meteoric ablation in the laboratory.

The second fellowship, on the Chemistry of the Upper Atmosphere, will investigate the chemistry of the metallic layers in the mesosphere, the formation of meteoric smoke, and the nucleation of noctilucent clouds, using a reactor employing laser photo-ionization and time-of-flight mass spectrometry.

Suitable applicants for these positions should have a PhD in experimental physical/atmospheric chemistry, chemical physics, or a closely related discipline. You should be prepared to work as part of a dynamic team and, when appropriate, to use your initiative as an independent researcher.

Both positions are 54-month appointments, available from 1 April 2012. Salary in the range £29,972 - £35,788 depending on experience.

Further information on CODITA and Atmospheric Chemistry at the University of Leeds is available at

Informal enquiries to Professor John Plane, email, web, tel +44 (0)113 343 8044.

Closing Date: 23 January 2012

(2) Tenure track position in Space Weather at George Mason University, VI - applications due 31 January.

From Bob Weigel (rweigel at

The School of Physics, Astronomy, and Computational Sciences (SPACS) within the College of Science at George Mason University announces the opening of a tenure track position at the assistant professor level in Space Weather. The SPACS academic program, leading to BS, MS and PhD degrees in astronomy, physics, computational sciences, and data sciences (informatics), includes a strong and growing Space Weather Program with 2 tenured faculty, 10 research faculty, and 20 graduate students. The Space Weather Program emphasizes a systems approach to Sun-Earth connections and research involving data analysis, simulation, and modeling that has potential applications in space weather prediction.

The tenure-track position requires a PhD in a space weather-related research area, preferably in upper atmosphere/ionosphere physics. Experience in planetary research is a plus. The applicant should have the potential to support research and graduate students through sponsored programs.

Applicants should submit statements of research interests, teaching interests and philosophy, and curriculum vita online at (position number F8410Z; deadline January 31, 2012). For additional information, please contact Kathleen Enos <> (703-993-3807).

The appointment will be in the newly formed School of Physics, Astronomy and Computational Sciences. SPACS has dynamic and growing graduate programs in physics, computational sciences, and data sciences that provides an ideal environment for faculty with an applied, collaborative orientation. For more information, see and the Space Weather Laboratory's website

George Mason University, Virginia’s largest public university, is located 15 miles from the US Capitol and is close to research centers and laboratories including the National Institutes of Health, Naval Research Laboratory, and the Goddard Space Flight Center. With more than 30,000 students, Mason is one of the fastest growing research universities in the country.

(3) Summer 2012 Air Force Research Laboratory Space Scholars Program for graduate students at Kirtland AFB, NM - applications due 6 February.

Multiple summer research topics of the 2012 AFRL scholars program are now open for application. Qualified graduate students (U.S. Citizens only) are encouraged to apply before 11:59pm MT on Feb. 6, 2012. The applicant eligibility and information can be found at Students are encouraged to email their questions regarding a specific topic to the contact personnel listed below the research title.

(1) Title: Electromagnetic energy deposition to the high-latitude ionosphere

Electromagnetic energy deposited in the form of Joule heat into the ionosphere is transferred to thermospheric neutrals whose temperatures, chemical reaction rates, density scale heights, and wind patterns can be altered. Moreover, altered density scale heights affect drag coefficients and alter neutral wind patterns affecting global electric fields. To date, no systematic method has been developed for incorporation of the Poynting flux into existing models. Students will be encouraged to analyze DMSP data and to develop an automated technique for cleaning up magnetic field datasets. The goal of this topic is to develop spatial maps of Poynting flux for different activity levels and/or solar wind conditions. Poynting flux derived from DMSP observations will be used to estimate Joule heating as input for the thermosphere-ionosphere electrodynamics general circulation model (TIEGCM).

(2) Title: Understanding Variability in Ion Flows and Auroral Precipitation

The heating in the upper atmosphere is important to understand for satellite drag prediction. Times exist when the heating due to auroral processes far exceeds the heating due to solar illumination. It is during these times that our ability to predict satellite orbits is the worst. This is primarily because we lack an understanding of the energy deposition into the thermosphere due to both Joule and auroral heating. These heating sources are intimately related, since the aurora creates electron density, which is needed for Joule heating. In addition, auroral arcs are typically associated with strong electric fields, which drive Joule heating. On the large scale, when the aurora increases, the electric fields increase. On smaller scales, studies have shown that the aurora and the electric fields are sometime correlated, sometime anti-correlated and sometimes not correlated at all. We are interested in investigations that explore the relationship between auroral precipitation, ion flows, and the heating that results from these utilizing Defense Meteorological Satellite Program data.

(3) Title: Remote sensing of plasmasphere density using field line resonances

The plasmasphere is a vast region of the inner magnetosphere filled with trapped low energy ions and electrons of ionospheric origin. The plasmasphere is important for several reasons including accurately specifying the propagation of waves which contribute to the decay and acceleration of energetic particles in the radiation belts. Precise knowledge of the plasmasphere is therefore important for accurately predicting the evolution of energetic particle populations. Time-dependant three-dimensional models of the plasmasphere are needed to accurately model the field-aligned plasma densities, composition, and temperatures. This effort will combine the first principles 1-d field line interhemispheric plasma (FLIP) model with observationally determined field line resonances (FLRs) to produce a more reliable dynamic three-dimensional plasmasphere. FRLs will be determined from pairs of ground magnetometers at appropriate L values. The main goal of this effort will be to determine quantitative ways to parametrize the FLIP model based on the FLR values from the ground magnetometers.

(4) Title: Modeling penetration electric fields during magnetic storms

The objective of this project is to develop the modeling capability of penetration electric fields. Penetration electric fields play a critical role in controlling the ionospheric electrodynamics and the generation of ionospheric disturbances during magnetic storms. However, it has not been well understood how penetration electric fields are quantitatively related to the interplanetary electric field, how long penetration electric fields can last, what determines the shielding efficiency, and what the interplay of penetration and dynamo electric fields is during the course of magnetic storms. In this project, the field-aligned currents derived from the Iridium magnetometer data will be used to drive the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIEGCM) to simulate penetration electric fields and low-latitude ionospheric disturbances. The simulation results will be compared with measurements of ionospheric incoherent scatter radars and satellites.