IS Coordinated Science at Mid-Latitudes

Madrigal as a Scientific Tool

Anthea Coster, MIT Haystack Observatory

Outline
Storm Studies
Modeling
Instabilities
SED
Madrigal

Current and Past ISRs
Positive Phase Storm Studies
Millstone Hill ISR, Ne

Sep 8, 2005

Sep 10, 2005

- Daytime positive phase lasting for ~13 hours
- Background increase after the sunrise; main increase after 17 UT
- Maximum Ne at 19-20 UT
- Increase in h_mF2 by ~100 km
- Decrease in Te by up to ~1000K, enhancement in Ti by 50-200K
Positive storm phase after ~15 UT
Maximum Ne at 21-22 UT, i.e. 1.5-2 hours later than at Millstone Hill
Uplift of the F-layer
Positive phase mechanisms

- Increase in oxygen density (Burns et al., 1991, 1995)
- Equatorward meridional wind (Jones and Rishbeth, 1971)
- Electric field (Lanzerotti et al., 1975, Huang et al., 2005, Swisdak et al., 2006)
- Downward protonospheric plasma fluxes
Millstone Hill ISR: Ne, Te, Ti, Vi at 17 UT

- Ne
- Te
- Ti
- Vi

Graphs showing Ne, Te, Ti, and Vi concentrations and velocities at 17 UT.
Arecibo ISR Ne, Te, Ti, Vi at 19 UT

- Ne, 19UT
- Te, 19UT
- Ti, 19UT
- Vi, 19UT
Virtual ISR: ISRIM
incoherent scatter radar ionospheric model

- ISRIM local climatology
- ISRIM regional climatology
- ISRIM local variability
- ISRIM convection

http://madrigal.haystack.mit.edu/models/
Ionospheric climatology derived from long-term and multiple ISR data. Midday NeI is shown to demonstrate the development of annual and semiannual ionospheric changes with latitude.

High latitude convection pattern derived from Millstone Hill and Sondrestrom ISR long-term observations.
UHF Coherent Backscatter: Microscale SAPS/SAID Physics

UHF = kinetic regime: scatter maps driving electric field

[Foster and Erickson, 2000]
Millstone ISR and GPS TEC Observations
MADRIGAL

A robust, World Wide Web based system capable of managing and serving archival and real-time data, in a variety of formats, from a wide range of ground-based instruments.

It is installed at a number of sites around the world. Each site controls their own Madrigal installation, and can add or upgrade their data from their instrument(s) on their site at any time.
Welcome to the Madrigal Database at Haystack Observatory

Try the new Simple Madrigal Data Access link on the Access Data page.

Madrigal is an upper atmospheric science database used by groups throughout the world. Madrigal is a robust, World Wide Web based system capable of managing and serving archival and real-time data, in a variety of formats, from a wide range of upper atmospheric science instruments. The basic data format is the same as that used by the National Science Foundation supported Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) program, which maintains a CEDAR Database at the National Center for Atmospheric Research (NCAR). Data files are easily exchanged between the two sites, but Madrigal has a significantly different emphasis. Data at each Madrigal site is locally controlled and can be updated at any time, but shared metadata between Madrigal sites allow searching of all Madrigal sites at once.

Data can be accessed from the Madrigal sites at Millstone Hill, USA, Arecibo, Puerto Rico, EISCAT, Norway, SRI International, USA, Cornell University, USA, Icancarca, Peru, The Institute of Solar-Terrestrial Physics, Russia, and Wuhan Ionospheric Observatory, the Chinese Academy of Sciences. and directly, using APIs which are available for several popular programming languages. A CVS archive of all Madrigal software and documentation is available from the Open Madrigal Web site. The latest version of Madrigal may also be downloaded from there.

http://madrigal.haystack.mit.edu/madrigal/
Madrigal web tutorial - Table of contents

1. What is Madrigal?
2. How does Madrigal organize data?
3. Accessing Madrigal data through the web
 - 3.1 Simple Madrigal data access
 - 3.2 Browsing for individual Madrigal experiments
 - Madrigal experiment page
 - File Summary
 - Data Browser
 - File download
 - 3.3 Global Madrigal database report
 - 3.4 Plot data from instruments
Access Madrigal Data

There are four ways to access Madrigal data. Choosing Simple Madrigal Data Access will allow you to print and plot Madrigal data via an easy to use interface. However, this interface does not allow you to see derived parameters or to filter data. To look at the data from a particular Madrigal experiment using the full-featured Madrigal interface, choose Browse for Individual Madrigal Experiments. To get data in ascii format from a group of Madrigal experiments all at once, choose Global Madrigal Database Report. To plot data from one or more instruments and/or experiments, choose Plot Data from Instruments.

Simple Madrigal Data Access

The simple madrigal data access link allows new users of Madrigal to print and plot data easily. In order to make it easy to use, a number of Madrigal's capabilities are not available, including the ability to choose which parameters to print, the ability to display derived parameters, and the ability to filter data. Use the other three Madrigal interfaces below to access these more powerful capabilities. Click here for a tutorial on this way to access Madrigal data.

Browse for Individual Madrigal Experiments

Browse for individual Madrigal experiments displays a list of available experiments, subject to user-specified filters. One of the filters specifies the instruments you want to see. For several of the incoherent scatter radars, for example Millstone and EISCAT, there are several options corresponding to different antennas. As a rule, select the first option, which displays all data from that instrument. In addition to the filters, a number of options may be selected on the form. For example, it is possible to display a combined listing of experiments at all Madrigal sites, or only the experiments at the current site. Click here for a tutorial on this way to access Madrigal data.

Global Madrigal Database Report

This form allows you to generate a report on multiple experiments at once. Experiments can be filtered by instrument, kind of data, and date range or season. The data within any given experiment can be filtered using any parameter, measured or derived. Data from all experiments located in the local Madrigal database matching your criteria will be returned in a single report. Click here for a tutorial on this way to access Madrigal data.

Plot Data from Instruments

Simple Madrigal data access - select an instrument...

Click on the instrument you want to get data or plots from:

Select an instrument
- Jicamarca IS Radar
- Arecibo IS Radar - Linefeed
- MU IS Radar
- Millstone Hill IS Radar
- Millstone Hill UHF Zenith Antenna
- St. Santin IS Radar
- St. Santin Nançay Receiver
- Chatanika IS Radar
- ISTP Irkutsk Radar

Tutorial on this page
Return to Access Data page
Return to Madrigal home page
How is the simple data access different?

Please send any comments or suggestions to the Open Madrigal Users Mailing List.
Selected Instrument: *Millstone Hill IS Radar*

Click on one or more dates you want data or plots from:

(Windows users: Hold down Control key to select more than one date)

```
2006-06-19
2006-06-16
2006-06-01
2006-05-31
2006-05-16
2006-05-02
2006-04-28
2006-04-12
2006-04-06
2006-04-05
```

[Plot data]

Tutorial on this page **Return to Access Data page** **Return to Madrigal homepage** **How is the simple data access different?**

Please send any comments or suggestions to the Open Madrigal Users Mailing List.
Simple Madrigal data access - select parameter and y axis for plotting...

Selected Instrument:
- Millstone Hill IS Radar

Selected dates:
- 2005-09-10

Create a new plot...

Choose parameter to plot: Log10(uncorrected electron density)

Select y axis: Altitude

or, view existing plots and descriptions:
- 2005-09-10
 - INSCAL Analysis notes for mlh 1142298092
 - Electron density summary plots
 - Electron temperature summary plots
 - Ion temperature summary plots
 - Ion velocity summary plots
Electron density summary plots for Millstone Hill Radar

Sep. 10, 2005

Rapid LTCS Experiment

This is an experiment designed to provide rapid time coverage of the E-region and F-region ionosphere. This experiment is useful for providing high altitude resolution in the E-region and F-region along with sufficient pointing directions using MISA to provide electric field measurements. The dwell time is a given position is 8 minutes to provide the possibility of a long integration if needed. The overall cycle time of the experiment is 65 minutes with a measurement triplet every 32 minutes.

This page has the following summary plots of electron density:

1. Zenith antenna - altitudes above 200 km versus time using single pulse measurements
2. Zenith antenna - E and F1-region altitudes versus time using alternating code measurements
3. Misa antenna - Azimuth=0°(North), Elevation=45°, altitudes above 200 km versus time using single pulse measurements
4. Misa antenna - Azimuth=0°(North), Elevation=45°, E and F1-region altitudes versus time using alternating code measurements
5. Misa antenna - Azimuth=-90°(West), Elevation=45°, altitudes above 200 km versus time using single pulse measurements
6. Misa antenna - Azimuth=-90°(West), Elevation=45°, E and F1-region altitudes versus time using alternating code measurements
Access Madrigal Data

There are four ways to access Madrigal data. Choosing Simple Madrigal Data Access will allow you to print and plot Madrigal data via an easy-to-use interface. However, this interface does not allow you to see derived parameters or to filter data. To look at the data from a particular Madrigal experiment using the full-featured Madrigal interface, choose Browse for Individual Madrigal Experiments. To get data in ascii format from a group of Madrigal experiments all at once, choose Global Madrigal Database Report. To plot data from one or more instruments and/or experiments, choose Plot Data from Instruments.

Simple Madrigal Data Access

The simple madrigal data access link allows new users of Madrigal to print and plot data easily. In order to make it easy to use, a number of Madrigal's capabilities are not available, including the ability to choose which parameters to print, the ability to display derived parameters, and the ability to filter data. Use the other three Madrigal interfaces below to access these more powerful capabilities. Click here for a tutorial on this way to access Madrigal data.

Browse for Individual Madrigal Experiments

Browse for individual Madrigal experiments displays a list of available experiments, subject to user-specified filters. One of the filters specifies the instruments you want to see. For several of the incoherent scatter radars, for example Millstone and HISCAT, there are several options corresponding to different antennas. As a rule, select the first option, which displays all data from that instrument. In addition to the filters, a number of options may be selected on the form. For example, it is possible to display a combined listing of experiments at all Madrigal sites, or only the experiments at the current site. Click here for a tutorial on this way to access Madrigal data.

Global Madrigal Database Report

This form allows you to generate a report on multiple experiments at once. Experiments can be filtered by instrument, kind of data, and data range or season. The data within any given experiment can be filtered using any parameter, measured or derived. Data from all experiments located in the local Madrigal database matching your criteria will be returned in a single report. Click here for a tutorial on this way to access Madrigal data.

Plot Data from Instruments
Madrigal Experiment Selector

Select instrument(s)
- College Fabry-Perot
- Sonoma Stromporadino Trou Faby-Perot
- Trou Fabry-Perot
- Stockholm F Michelson
- CEDAR Inter
- LSU CCD imager
- CEDAR Imager
- WMO
- All-sky camera at Qaanaaq
- World-wide OGS Recover Network

Select date range
- Start Day, Month, Year: 11/15/2005
- End Day, Month, Year: 31/12/2008

Select list format
- Experiment ID
- Madrigal Site
- Start Date
- Start Time
- End Date
- End Time
- Instrument Code
- Instrument Mnemonic
- Instrument Name
- Experiment Name

Options
- Sort Order: Date first
- Date Order: Earliest first
- Date Format: 03/21/1999
- File Selection: Show Latest Files
- Show Experiments at: All Madrigal Sites
- List selected date

List selected data
Madrigal Experiment Listing

<table>
<thead>
<tr>
<th>Site</th>
<th>Start Date</th>
<th>S Tm</th>
<th>End Date</th>
<th>E Tm</th>
<th>Inst</th>
<th>Experiment Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO Mills</td>
<td>09/10/2005</td>
<td>0000</td>
<td>09/10/2005</td>
<td>2355</td>
<td>gps</td>
<td>World-wide Vertical Total Electron Content</td>
</tr>
<tr>
<td>GO Mills</td>
<td>09/11/2005</td>
<td>0000</td>
<td>09/11/2005</td>
<td>2355</td>
<td>gps</td>
<td>World-wide Vertical Total Electron Content</td>
</tr>
</tbody>
</table>
World-wide GPS Receiver Network

World-wide Vertical Total Electron Content

Start Time: 09/10/2005 00:00:00 End Time: 09/10/2005 23:55:00

CFDAR Format Datasets:

- gps050910g.001 - default file for Minimum Scallop TEC Processing - status: final
 - View description from the catalog and/or header records
 - File Summary - Record summary, list of parameters in file, etc.
 - Data Browser (isprint) - Flat-file listing of a user-selected portion of the file
 - Download file - Download gps050910g.001 in selected format

Additional information:

- TEC Maps

Notes

Add to these notes
ISPrint Database Browser

Experiment: World-wide Vertical Total Electron Content

Return to experiment list Return to Macrigal homepage A tutorial on how to use this page Return to access data page

Sat Sep 10 00:00:00 2005 - Sat Sep 10 23:55:00 2005 : World-wide GPS Receiver Network

Available Filters - Using default or manually entered selections

Set data filters manually, or ...

- Data will be listed only if it falls within the range of the filter
- For azimuth and elevation, two separate ranges can now be used
- Explanation of Filters

Start date: Sep 10 2005
Start time: 0 0 0
End date: Sep 10 2005
End time: 23 55 0

Optional free-form filters using any parameter mnemonic on this page

...use a saved filter and parameter selection:

Public Directories: jfoster:jfoster
Public filters: coherent1

You are not logged in.
Available Parameters (Comprehensive)

- Description of parameters
- I3Print (Short form)

(parameters with regular typeface are derived)

<table>
<thead>
<tr>
<th>Time Related Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDAY</td>
</tr>
<tr>
<td>B UT</td>
</tr>
<tr>
<td>YEAR</td>
</tr>
<tr>
<td>MONTH</td>
</tr>
<tr>
<td>UT1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geographic Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDLAT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geophysical Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
</tr>
<tr>
<td>KP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interplanetary Magnetic Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIMF</td>
</tr>
<tr>
<td>BZGSE</td>
</tr>
</tbody>
</table>

I. S. Radar Basic Parameter
Experiment: World-wide Vertical Total Electron Content

Available Filters

Set data filters manually, or ...

- Data will be listed only if it falls within the range of the filter
- For azimuth and elevation, two separate ranges can now be used
- [Explanation of Filters](#)

...use a saved filter and parameter selection:

<table>
<thead>
<tr>
<th>Public Directories</th>
<th>Public filters:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coherent1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Private Directories</th>
<th>Private filters:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filters:</th>
<th>User: arj</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start date:</th>
<th>Sep</th>
<th>10</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start time:</td>
<td>H: 0</td>
<td>M: 0</td>
<td>S: 0</td>
</tr>
<tr>
<td>End date:</td>
<td>Sep</td>
<td>10</td>
<td>2005</td>
</tr>
<tr>
<td>End time:</td>
<td>H: 25</td>
<td>M: 55</td>
<td>S: 0</td>
</tr>
</tbody>
</table>

Optional free-form filters using any parameter mnemonic on this page

- Mnemonic (or Mnem 1 +..+ Mnem 2)
- Leave spaces between mnemonics and operator
- Leave blank if none

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Lower limit (leave blank if none)</th>
<th>Upper limit (leave blank if none)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dT</td>
<td>40.0</td>
<td>60.0</td>
</tr>
<tr>
<td>dLon</td>
<td>150.0</td>
<td>200.0</td>
</tr>
</tbody>
</table>
(parameters with regular typeface are derived)

Tune Related Parameter

<table>
<thead>
<tr>
<th></th>
<th>BDAY</th>
<th>BEG UT</th>
<th>BHHMMSS</th>
<th>BHM</th>
<th>BMONTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B.UTH</td>
<td>DAY</td>
<td>DAYNO</td>
<td>DUT21</td>
<td>EHHMMSS</td>
</tr>
<tr>
<td></td>
<td>YEAR</td>
<td>HOUR</td>
<td>DAYNO</td>
<td>MD</td>
<td>MIN</td>
</tr>
<tr>
<td></td>
<td>MONTH</td>
<td>RECNO</td>
<td>SEC</td>
<td>SLT</td>
<td>UT</td>
</tr>
<tr>
<td></td>
<td>UT1</td>
<td>UT2</td>
<td>UTH</td>
<td>YEAR</td>
<td></td>
</tr>
</tbody>
</table>

Geographic Coordinate

<table>
<thead>
<tr>
<th></th>
<th>GDLAT</th>
<th>GLON</th>
<th>SDWHT</th>
<th>SZEN</th>
</tr>
</thead>
</table>

Geophysical Index

<table>
<thead>
<tr>
<th></th>
<th>AP</th>
<th>AP3</th>
<th>DST</th>
<th>Fl07</th>
<th>FBAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interplanetary Magnetic Field

<table>
<thead>
<tr>
<th></th>
<th>B1MF</th>
<th>BXGSE</th>
<th>BXGSM</th>
<th>BYGSE</th>
<th>BYGSM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BZGSE</td>
<td>BZGSM</td>
<td>SWDEN</td>
<td>SWQ</td>
<td>SWSPD</td>
</tr>
</tbody>
</table>

I. S. Radar Basic Parameter

<table>
<thead>
<tr>
<th></th>
<th>TEC</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

I. S. Radar Operation Parameter

<table>
<thead>
<tr>
<th></th>
<th>EOF2</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
Please contact **Millstone** before using this data in a report or publication.

Data derived from file

```
/cp/rridrigal/experiments/2005/gps/10sep05/gps050910g.001:
```

Filters used:

Filter 1:

- **UT1**
 - Range 1: Lower = 1757462400.0 (09/10/2005 0000:00), upper = 1757546500.0 (09/10/2005 2355:00)

Filter 2:

- **GDLAT**
 - Range 1: Lower = 40, upper = 44

Filter 3:

- **GGLON**
 - Range 1: Lower = 150, upper = 200

World-wide GPS Receiver Network: 09/10/2005 0040:00-0045:00

<table>
<thead>
<tr>
<th>EPHIMES</th>
<th>GDLAT</th>
<th>GGLON</th>
<th>TEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4500</td>
<td>44.00</td>
<td>154.00</td>
<td>1.02000e+01</td>
</tr>
<tr>
<td>4500</td>
<td>44.00</td>
<td>155.00</td>
<td>1.03000e+01</td>
</tr>
</tbody>
</table>

World-wide GPS Receiver Network: 09/10/2005 0045:00-0050:00

<table>
<thead>
<tr>
<th>EPHIMES</th>
<th>GDLAT</th>
<th>GGLON</th>
<th>TEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>44.00</td>
<td>154.00</td>
<td>1.03000e+01</td>
</tr>
<tr>
<td>5000</td>
<td>44.00</td>
<td>155.00</td>
<td>1.04000e+01</td>
</tr>
<tr>
<td>5000</td>
<td>44.00</td>
<td>156.00</td>
<td>1.07000e+01</td>
</tr>
</tbody>
</table>

World-wide GPS Receiver Network: 09/10/2005 0050:00-0055:00

<table>
<thead>
<tr>
<th>EPHIMES</th>
<th>GDLAT</th>
<th>GGLON</th>
<th>TEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5500</td>
<td>44.00</td>
<td>156.00</td>
<td>1.10000e+01</td>
</tr>
<tr>
<td>5500</td>
<td>44.00</td>
<td>155.00</td>
<td>1.06000e+01</td>
</tr>
<tr>
<td>5500</td>
<td>44.00</td>
<td>156.00</td>
<td>1.07000e+01</td>
</tr>
</tbody>
</table>

World-wide GPS Receiver Network: 09/10/2005 0055:00-0100:00

<table>
<thead>
<tr>
<th>EPHIMES</th>
<th>GDLAT</th>
<th>GGLON</th>
<th>TEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>44.00</td>
<td>156.00</td>
<td>1.11000e+01</td>
</tr>
<tr>
<td>10000</td>
<td>44.00</td>
<td>157.00</td>
<td>1.13000e+01</td>
</tr>
<tr>
<td>10000</td>
<td>44.00</td>
<td>155.00</td>
<td>1.06000e+01</td>
</tr>
<tr>
<td>10000</td>
<td>44.00</td>
<td>156.00</td>
<td>1.06000e+01</td>
</tr>
</tbody>
</table>

World-wide GPS Receiver Network: 09/10/2005 0100:00-0105:00

<table>
<thead>
<tr>
<th>EPHIMES</th>
<th>GDLAT</th>
<th>GGLON</th>
<th>TEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10500</td>
<td>44.00</td>
<td>157.00</td>
<td>1.10000e+01</td>
</tr>
<tr>
<td>10500</td>
<td>44.00</td>
<td>156.00</td>
<td>1.10000e+01</td>
</tr>
<tr>
<td>10500</td>
<td>44.00</td>
<td>156.00</td>
<td>1.13000e+01</td>
</tr>
<tr>
<td>10500</td>
<td>44.00</td>
<td>157.00</td>
<td>1.13000e+01</td>
</tr>
<tr>
<td>10500</td>
<td>44.00</td>
<td>153.00</td>
<td>1.05000e+01</td>
</tr>
</tbody>
</table>
Matlab Scripts

Three different matlab scripts will be available which

1) GetMadExpList1.m - This script finds experiments within specified dates and selects only default or realtime files within each experiment.

2) getGPSdata.m - Gets GPS TEC data from Madrigal

3) isrtec.m - downloads ISR data from an madrigal site (see siteURL) from the specified madrigal file (see madFile). It then calculates integrated electron content for each profile along the radar's line-of-sight.
ISR World Days – Long Runs

January, 1993 – 10 days
October, 2002 – 30 days
September, 2005 – 30 days
March-April, 2006 – 30 days

Modern ISRs such as ESR, AMISR and ZIP will be able to operate for even longer periods, potentially 24/7.