Miniaturized In-Situ Plasma Sensors—Applications for NSF Small Satellite program

Dr. Geoff McHarg
National Science Foundation Small Satellite Workshop-
CEDAR June 2007
FalconSat-3—Space Physics on a small satellite

- Built 2005-2006
- Launched 8 March 2007
- Two plasma sensors
 - Plasma Local Anomalous Noise Experiment (PLANE)
 - Flat Plasma Spectrometer (FLAPS)
Space Weather (Ionosphere)—Comparison to Terrestrial Weather

- Any weather forecast requires
 - Remote measurements to give world wide coverage
 - In-Situ measurements to give error bars for the remote measurements

<table>
<thead>
<tr>
<th>Space Weather</th>
<th>Terrestrial Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic measurements required to drive models</td>
<td></td>
</tr>
<tr>
<td>- Plasma Temperature</td>
<td>Neutral Temperature</td>
</tr>
<tr>
<td>- Plasma Density</td>
<td>Neutral Pressure</td>
</tr>
<tr>
<td>- Neutral Winds</td>
<td>Neutral Winds</td>
</tr>
</tbody>
</table>

Space Weather is under-sampled!

Fig 1.5 Daley
In-situ

Fig 1.6 Daley
Remote
Plasma Local Anomalous Noise Experiment—PLANE

Principle of operation

- PLANE uses two retarding potential analyzers (RPA)
- Separate the signal from the turbulent lower energy from the higher ram energy ions
- Output from both instruments differenced and monitored at high frequency
- Monitors turbulence to 10 cm scale size, a **factor of 100 improvement over current techniques**

Status:

- On-orbit initial checkout

Data obtained during CHAWS experiment provided motivation for PLANE

PLANE prototype
Flat Plasma Spectrometer (FLAPS)

- Flat Plasma Spectrometer missions
 - SSA—Monitor plasma environment
 - DCS—Detect plasma turbulence
- FLAPS—smart skin MEMS sensor
 - $\frac{\Delta E}{E} \approx 0.05$
 - 200 cm3
 - 0.35 watts
 - 400 grams
 - Embedded ASCIS, high voltage power supply, micro-channel plate
 - Designed by Dr. Fred Herrero of NASA Goddard
 - Built by Applied Physics Lab
- Capabilities:
 - Full ion energy spectra
 - Detect non-thermal ion properties associated with plasma bubbles
- Status:
 - On-orbit initial checkout
Miniaturized Electrostatic Analyzer (MESA)—A Smart skin sensor

- **MESA design philosophy**
 - Begin with the end in mind
 - “Good enough” quality instrument
 - Thermal plasma density and temp.

- **Laminated electrostatic analyzer allows thousands of apertures**
 - Large aperture area/sensor volume ratio
 - Band-pass energy analyzer
 - No charge multiplication—relies on LEO densities
 - Manifested on 3 different satellites

Proto-type MESA designed for FalconSat-2

Cross-section of MESA: steers particles from the entrance aperture to the exit aperture by electrically-biased central plate

MESA has performed as expected in chamber tests against a planar RPA.
Future ideas

• What can you do with an iMESA in a cubesat size?
• PCBsat—satellite on a board
 – 3.2 in sq. x 1 in thick
 – 200 gm, $500 cost for board
 – Contains a cell phone camera
 – 3V, 500 mW power system
• PCBSat → PUBSat
 – 50 PUBSats in an orbit
 – Simultaneous plasma and optical measurements of the earth
 – Kit up 60 PUBSats, distribute to multiple universities—pick 50 that work
MEMS—aggressive miniaturization for plasma sensors

- **WISPERS**—Follow-on to (FLAPS)
 - 9 sensor heads covering 15°x15° FOV (FLAPS: 5 heads and 8°x1° FOV)
 - Detect up to 500 eV particles
 - Funded by NRL Operational Responsive Space (ORS) program
 - Payload on FS-5, manifested 4Q 2009

FLAPS qualification model: left showing close up of 5 detectors, right showing entire assembly

Notional top-view of WISPERS instrument showing 9 sensors and 15°x15° FOV.
WISPERS design

- Uses proven electrostatic energy filtering
- Smaller $d(1-f)$ means smaller aperture and better energy resolution
- Larger L/d means capability to detect higher energy thruster particles
- Charge multiplication will allow MEO and GEO operation
 - Current design not radiation hardened—will need to be radiation hardened for MEO or GEO operation
MEMS future concepts

- Detection of neutrals
 - Low power MEMS ionizer provides ions for WISPERS
 - Improved pointing knowledge allows neutral wind measurements

- Mass spectrometry
 - Chop ESA allowing time of flight measurement

Figure 1: (Left) Schematic of the nanoscale gas ionization device. (Right) Typical results showing stable ionization discharge for argon at extremely low operating voltages (3-4 Volts).

Koratkar et al. 2005
Final Thoughts

- Building instruments for small satellites is not hard
 - Miniaturization makes size and power not an issue
- Matching sensors with missions is an issue
 - Keep the number of instruments on S/C small
 - 2 to 3 at most
 - Match the instruments and S/C cost/mission
- Keep the missions simple—but launch more of them!