Atmospheric Gravity Waves in the Ionosphere and Thermosphere During the 2017 Solar Eclipse

Cissi Lin1
Yue Deng1
Aaron Ridley2

1University of Texas at Arlington
2University of Michigan at Ann Arbor

Special Thanks to Doug Drob3, Shun-rong Zhang4, Larisa Goncharenko4

3Naval Research Laboratory
4MIT Haystack Observatory
Eclipse-Induced Bow Waves

• Absence of heating source becomes a moving perturbation source. When the footprint moves supersonically, a bow-wave front is formed.

• GNSS network observed both bow-wave front and the trailing gravity waves.

[Chimonas, 1970]

[Eckermann et al., 2007]

[Zhang et al., 2017]
Global Ionosphere-Thermosphere Model (GITM)

Features:
- Self-consistent global circulation model for the upper atmosphere
- Non-hydrostatic solutions
- Flexible 3D grids

Solar Eclipse Simulation:
- **Time:** 13:30–23:30 UT, Aug 21, 2017
- **Global simulation** with resolutions of 2°x0.5° in geophysical longitude and latitude **0.3 of the scale height** between **100–600 km** altitude.
- Differences between control and eclipse runs are considered as consequential effects by eclipse.

[Image of solar eclipse simulation with title and scale height information]

Methodology

[Lin et al., 2017]
The obscuration factor is set to be 10% at totality.

EUV flux is assumed uniform across the solar disk, a simplified setup.

The ionosphere-thermosphere responses are extracted at 2 ground station locations: Missouri (MO), and Massachusetts (MA), at 5-sec cadence. The former station underwent totality and a partial eclipse of 60% at the latter station during the peak time.

Methodology

Lin et al., 2018

Marriott et al., 1971

Huba and Drob, 2017
Waves in the IT System

- **Electron density (right column):**
 - < 230 km: decrease peaks at totality
 - > 230 km: ~30 min delay in maximal decrease

- **Neutral density (left column):** Maximal decrease occurred ~30 min after totality started.

- IT responses at totality location show strong wave features.

- High-frequency waves are observable clearly in the neutral density profiles at the totality station because the sharp transition of the change rate of EUV obscuration factor.

[Lin et al., 2018]
Periodicity: Short-Period Waves

Strong waves < 20 min: resulting from the sharp gradient of the obscuration

>1 hr: Capturing the large-scale ‘cavity’ during the eclipse

Neutral Density

Electron Density

[Lin et al., 2018]
Wave Activities in Vertical Total Electron Content (VTEC)

- Savitzky-Golay (3-degree, 0-order) low-pass filter to separate the large-scale and small-scale structures.
- Longer-period waves (gravity waves) sustain hours after eclipse ended.
- Compared with measurements:
 - Bow-wave front
 - Trailing waves within the bow
 - Negative zone spans ~20° x 20°
Summary & Conclusions

• Lack of thermospheric heating is sufficient to induce bow waves.

• Strong high-frequency wave components \((T < 30 \text{ min})\) are observable in both I&T at the totality stations but absent from the partial-eclipse station.

• The supersonic moving shadow results in a bow-wave front and trailing gravity waves seen in VTEC. Large-scale variability has an elongated tail and small-scale variability reveal wave structures within a negative zone spanning \(~20^\circ \times 20^\circ\).

• Gravity waves sustain hours after eclipse ended.