On the direction of the Poynting flux associated with equatorial plasma depletions

J. Rodríguez-Zuluaga*, C. Stolle* and J. Park**

* GFZ, German Research Centre for Geosciences and University of Potsdam, Germany.
** Korea Astronomy and Space Science Institute, Daejeon, South Korea.

Overview

Equatorial plasma depletions (EPD) refer to the large-scale structure of topside Spread F. They are well-known for their adverse effect on radio wave propagation.

Current studies focus on:

- day-to-day variability and forecasting [e.g., Hysell et al., 2018; Yokoyama, 2017]
- effects on GNSS [e.g., Rino et al., 2018; Morton et al., 2018]
- seeding mechanisms [e.g., Rodrigues et al., 2018]

A better understanding of the electrodynamics of EPDs promises to improve their modeling and forecasting.
Overview

Equatorial plasma depletions (EPD) refer to the large-scale structure of topside Spread F.

Local time: Post-sunset

Scale: Few 10s to 100s km.

Altitude: Bottomside to 2000 km.

Typical observation of EPD by polar-LEO satellites.
Overview

Why do we care about the Poynting flux $S_{||}$ and its orientation?

$S_{||}$ can characterize dissipation of energy associated with static fields.

$$S_{||} = \frac{1}{\mu_0} (\delta E_\perp \times \delta B_\perp)$$

Based on theoretical assumptions,

$S_{||}$ must flow away from the dip equator

[e.g., Bhattacharyya & Burke, 2000; Dao et al., 2013]
Overview

Why do we care about the Poynting flux S_\parallel and its orientation?

Current numerical models follow this configuration [e.g., Aveiro & Hysell, 2013; Yokoyama & Stolle, 2017]

\[
S_\parallel = \frac{1}{\mu_0} (\delta E_\perp \times \delta B_\perp)
\]

\[
j_\parallel = \frac{1}{\mu_0} \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \right)
\]
Do observations agree with such configuration?
Method

Swarm constellation

Lifetime: Since November 2013.

Orbits: Near-circular polar,
Alpha & Charlie (445 km); Bravo (512 km).

Data: Magnetic field, electron density, ion-drift.

The three parameters must be well correlated (i.e., $|cc| > 0.6$)
Observations

Evidence of interhemispheric Poynting flux (i.e., energy flows from the southern hemisphere to the north.)

\[S_\parallel = \frac{1}{\mu_0} (\delta E_\perp \times \delta B_\perp) \]

Swarm presents a limited set of electric field data which restricts a climatological analysis of the \(S_\parallel \).

However, valuable information can be obtained from the orientation of the \(j_\parallel \).
Observations

S_{\parallel} \text{ from north to south by assuming a growing EPD (i.e., eastward } \delta E \text{)}

\[S_{\parallel} = \frac{1}{\mu_0} (\delta E \perp \times \delta B \perp) \]
Observations

\[S_{||} \text{ from south to north by assuming a growing EPD (i.e., eastward } \delta E) \]

\[S_{||} = \frac{1}{\mu_0} (\delta E_{\perp} \times \delta B_{\perp}) \]
Seasonal and longitudinal variability of $j_{||}$
(based on almost 5 years of observations)
Seasonal and longitudinal variability of $j_{||}$
(based on almost 5 years of observations)
Seasonal, longitudinal and MLT variability of $j_{||}$
(based on almost 5 years of observations)
Seasonal, longitudinal and MLT variability of $j_{||}$
(based on almost 5 years of observations)
j_\parallel close in the hemisphere with the highest conductance

j_\parallel closing around the **southern** foot of EPDs
\(\mathbf{j}_\parallel \) close in the hemisphere with the highest conductance

\(\mathbf{j}_\parallel \) closing around the **southern** foot of EPDs

Pedersen conductance (80 - 300 km, 22 LT) from IRI and NRLMSISE-00 models
Summary

• Observations across EPDs of magnetic and electric fields from the Swarm mission suggest a preference for interhemispheric Poynting flux at LEO altitudes.

• The orientation of the field-aligned currents shows a distinct seasonal, longitudinal, and MLT dependence.

• The use of an extended data set of electric field observations will precisely determine the spatiotemporal characteristics of the Poynting flux.
Acknowledgement

To the CEDAR Science Steering Committee.
To the Special Priority Program (SPP) "DynamicEarth" of the German Research Foundation (DFG).

Data & information: earth.esa.int/swarm

Invitation:
Poster EQIT01 "Assessment of the plasma and magnetic pressure balance across equatorial plasma depletions."
-Tomorrow, Tuesday 18, 2019-
References