Geospace at the System Level: Reductionism v. Complexity

Michael W. Liemohn
AOSS Dept., University of Michigan
Acknowledgments

- Michelle Thomsen had no input on the content of these slides
 - Also: I've had more than 45 minutes prep time
- However, an ISSI team of which I was a part did have significant influence
 - Led by Mark Lester and Eric Donovan
 - Half a dozen CEDAR and GEM regulars on the team
System-Level Science

- Two approaches: reductionism and complexity

- Reductionism:
 - Reduce a big problem into component problems
 - System-level reductionism
 - Don't worry about subsystem details, parameterize

- Complexity:
 - Toss out components completely
 - Look for relationships that are "scale-free": power law function
 - Intervals with the same power law = same physics
 - Slope of power law = something about the physics
"System" or "Systems" Level?

- One split:
 - Reductionism is *systems*-level
 - Complexity is *system*-level
- The battle rages in the streets
Reductionism

- **Basic meaning:**
 - Understand a complicated system by understanding its component subsystems

- **Some built-in assumptions**
 - Assumes the system can be compartmentalized
 - Assumes regions can be described with physical equations
 - Assumes inter-regional couplings are known
 - Assumes components interact at the boundaries

- **If these are met, then...**
 - Works great!
The Spherical Cow

- Reductionism in its purest form
System Level Reductionism

- Reductionism assumes boundary conditions between the components
 - Can we really understand the whole system by simply understanding each component separately?
 - As long as the flow is one-way through the system

- What if it isn’t?
 - What if there is a feedback cycle within the system?

- Example pic: cow's stomach is empty, tells brain to eat, cow eats, stomach gets full, tells brain to stop eating
What About Geospace?

- The classic schematic of geospace
 - Well compartmentalized regions (shaded different colors)
Geospace at the System Level

- Mass and energy flow in a particular direction
 - Solar wind into the magnetosphere
 - Ionosphere into the magnetosphere
 - Outer magnetosphere into the inner magnetosphere
 - Magnetosphere into the ionosphere/thermosphere

- What makes this a system-level issue
 - **Feedback**
 - When the input to one region can be modified by the response within that region
 - **Time history**
 - When the pre-existing state of a region changes how it responds to a certain input
Examples of Feedback and Time History

- **Feedback**
 - Polar cap electric potential saturation
 - At strong SW driving, internal processes reduce the efficiency of each new increase in SW driving

- **Time History**
 - Radiation belt dynamics
 - Depends on plasmasphere and ring current, which develop over hours to days
Mass and Energy Flow Through Geospace

- A detailed listing of the couplings

Lester et al., Rev Geophys. in prep
Regional System-Level Science

- Not all reductionist system-level science has to involve the entirety of geospace
 - Inter-regional couplings and feedback loops
 - Time-history influences within a single region
- Example: the inner magnetosphere
 - Some approaches are clearly not system level
 - At some level of sophistication, the analysis becomes a system-level scientific study
Levels of Analyzing the Ring Current 1

- Very simple level:
 - Estimate Dst^* and then guess
 - Use a linear or non-linear filter for the first arrow
 - Use empirical models of ion flux for the second arrow

- This is a "Bretherton Diagram" for the ring current
 - Bretherton Diagram = famous block diagram for atmospheric science that served them very well
Levels of Analyzing the Ring Current 2

- Solve the kinetic equation
 - Still simplistic: given initial and boundary conditions
 - Empirical relations or event-specific data for inputs
Levels of Analyzing the Ring Current 3

- Electric field “self consistency”
 - Electric field “driver” modified by ring current solution
 - First stage of system level scientific approach
Levels of Analyzing the Ring Current

- Add in magnetic field feedback
 - Field distortions due to solution-derived currents
 - Even more self-consistency
Levels of Analyzing the Ring Current 5

- **Solving the entirety of geospace**
 - Allowing the inner magnetospheric solution to modify the outer magnetospheric solution

![Diagram showing the relationship between Magnetic Field, Electric Field, Plasma Sheet Source Population, Ring Current Morphology, Loss Mechanisms, Ionospheric Conductance, and Large-scale reconfigurations.]
Levels of Analyzing the Ring Current 6

- One can add as many subsystems as one wishes
- Solving each box and arrow
 - Range of approaches
 - Parameterizations
 - First principles

Liemohn and Khazanov, AGU Monogr., v. 156
Reductionist to the Core

- WINDMI model: circuit model of geospace
 - Actually works for understanding feedback and time history in the geospace system

\[
\begin{align*}
L \frac{dI}{dt} & = V_{sw} - V + M \frac{dI_1}{dt} \\
C \frac{dV}{dt} & = I - I_1 - I_{ps} - \Sigma V \\
\frac{3}{2} \frac{dP}{dt} & = \Sigma \frac{V^2}{\Omega} - u_0 K^{1/2}_\parallel \Theta (I - I_c) P - \frac{P}{\tau_E} \\
\frac{dK_{\parallel}}{dt} & = \alpha P^{1/2} V - \frac{K_{\parallel}}{\tau_{\parallel}} \\
L_1 \frac{dI_1}{dt} & = V - V_1 + M \frac{dI}{dt} \\
C_1 \frac{dV_1}{dt} & = I_1 - \Sigma I V_1.
\end{align*}
\]
Modes of Geospace Response

- We like to classify geospace activity
- Example: substorms, SMCs, and sawtooth oscillations
 - Are they distinct modes or do they form a continuum?
Are They Different Modes?

- Complexity theory can help us answer this question
- Auroral brightening analysis
 - Power law => all events in this range have similar physics

Uritsky et al, 2002
Quick Review

- **Reductionism**: understanding a system by understanding its component subsystems

- **System-Level Reductionism**:
 - Non-negligible coupling between the subsystems
 - Two important terms: *Feedback* and *Time History*

- **Is a system-level approach necessary?**
 - No. Highly dependent on the question posed
 - Only you can be answer this for your particular topic
 - Some problems can be answered very well with a “local” analysis
 - Question to ask yourself: are feedback and time history negligible or important?
Looking Forward

- **Reductionism works**
 - Approach of many space physicists
 - Still more to do
 - Just entering the age of reductionist system-level scientific analysis of geospace

- **Complexity-reductionism compatibility**
 - Each approach needs the other
 - Complexity analysis constrains the reductionist analysis
 - Reductionist interpretation grounds complexity analysis in reality
The Ultimate System-Level Question

- This protester said it best...